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1 Proposition 2 for alternative measure of inequality

Consider the same two-period model without discounting analyzed in the paper. In this
section we derive Proposition 2 for the case in which long-run inequality is measured by
the variance of equilibrium expected long run after-tax income, which differs from the
variance of Vi since the latter includes the total expected cost of labor supply and the
former does not. Specifically, define by s(wki , x

k
i , t

k) the after-tax income of an agent with
productivity wki who chooses labor supply xki in period k when tax rate is tk. Then, when
such agent chooses her labor supply optimally (as defined by Lemma 1), she obtains

s∗i (w
k
i , t

k) = (1− tk)
(

1− tk +
tk

n

)
· (wki )2 +

tk

n

(
1− tk +

tk

n

)
· Z =

=

(
1− tk +

tk

n

)
·
(

(1− tk)(wki )2 +
tk

n
Z

)
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Then, the expected long run after-tax income of agent with productivity w1
i in period

k = 1 will be denoted by Gi(w
1
i , t

1∗ , t2
∗
), and can be written as

Gi(w
1
i , t

1∗ , t2
∗
) = s∗i (w

1
i , t

1∗) + p
[
(1− µ)s∗i (w

1
i , t

1∗) +
µ

n

n∑
j=1

s∗i (wj, t
1∗)
]
+

+ (1− p)
[
(1− µ)s∗i (w

1
i , t

2∗) +
µ

n

n∑
j=1

s∗i (wj, t
2∗)
]

=

= (1 + p(1− µ)) · s∗i (w1
i , t

1∗) + pµ · s̄∗(t1∗)+

+ (1− p)(1− µ) · s∗i (w1
i , t

2∗) + (1− p)µ · s̄∗(t2∗)

where

s̄∗(t1
∗
) =

(
1− t1∗ +

t1
∗

n

)
· 1

n
Z and s̄∗(t2

∗
) =

(
1− t2∗ +

t2
∗

n

)
· 1

n
Z

Then,
Ḡ(t1

∗
, t2

∗
) = (1 + p) · s̄∗(t1∗) + (1− p) · s̄∗(t2∗)

and

var
(
Gi(wi, t

1∗ , t2
∗
)
)

=
1

n

n∑
j=1

(
Gj(wj, t

1∗ , t2
∗
)− Ḡ(t1

∗
, t2

∗
)
)2

Gj(wj, t
1∗ , t2

∗
)− Ḡ(t1

∗
, t2

∗
) = (1 + p(1− µ)) · (s∗j(wj, t1

∗
)− s̄∗(t1∗))+

+ (1− p)(1− µ)(s∗j(wj, t
2∗)− s̄∗(t2∗))

⇒ var(Gi(wi, t
1∗ , t2

∗
)) =

1

n
·

n∑
j=1

(
(1 + p(1− µ))[s∗i (wi, t

1∗)− s̄∗(t1∗)]+

+ (1− p)(1− µ)[s∗i (wi, t
2∗)− s̄∗(t2∗)]

)2

s∗i (wi, t
1∗)− s̄∗(t1∗) =

(
1− t1∗ +

t1
∗

n

)
· (1− t1∗) ·

(
(wi)

2 − Z
)

s∗i (wi, t
2∗)− s̄∗(t2∗) =

(
1− t2∗ +

t2
∗

n

)
· (1− t2∗) ·

(
(wi)

2 − Z
)

var(Gi(wi, t
1∗ , t2

∗
)) =


(1 + p(1− µ))

(
1− t1∗ +

t1
∗

n

)
· (1− t1∗)+

+ (1− p)(1− µ)

(
1− t2∗ +

t2
∗

n

)
· (1− t2∗)


2

· 1

n

n∑
j=1

(
(wj)

2 − Z
)2

=

= A(p) · 1

n

n∑
j=1

(
(wj)

2 − Z
)2
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Thus,

sign

(
∂var(Gi(wi, t

1∗ , t2
∗
))

∂p

)
= sign

(
∂A(p)

∂p

)

∂A(p)

∂p
= 2

(
(1 + p(1− µ))

(
1− t1∗ +

t1
∗

n

)
· (1− t1∗) + (1− p)(1− µ)

(
1− t2∗ +

t2
∗

n

)
· (1− t2∗)

)
·

(1− µ)

(
1− t1∗ +

t1
∗

n

)
· (1− t1∗) + (1 + p(1− µ)) ·

(
−2 +

1

n
+ 2t1

∗ − 2t1
∗

n

)
∂t1

∗

∂p
−

− (1− µ) ·
(

1− t2∗ +
t2

∗

n

)
· (1− t2∗) + (1− p)(1− µ) ·

(
−2 +

1

n
+ 2t2

∗ − 2t2
∗

n

)
∂t2

∗

∂p


We know from Corollary 2 that ∂t1

∗

∂p
< 0 and −2 + 1

n
+ 2t1

∗ − 2t1
∗

n
< 0, since t1

∗
< 1.

Therefore, the second term in the square brackets is positive. Moreover, t2
∗

does not
depend on p, as the second is the last period of the game, thus, the last term in the
square brackets is zero. Further,(

1− t1∗ +
t1

∗

n

)
· (1− t1∗) >

(
1− t2∗ +

t2
∗

n

)
· (1− t2∗)

Therefore, the expression in the square brackets is positive, which completes the proof
that

sign

(
∂var(Gi(wi, t

1∗ , t2
∗
))

∂p

)
= sign

(
∂A(p)

∂p

)
> 0

Q.E.D.

2 Two-period Model with Discounting

Consider a variant of the model discussed in the paper except that all agents face the same
common discount factor δ ∈ (0, 1). That is, the overall utility of agent i is Vi = u1i + δ ·u2i .
Discounting does not affect the optimal choice of labor in any period. Neither it affects
the tax rate that would emerge in period k = 2 if there is a re-vote on the level of
redistribution. Thus, as before u∗i (w

1
i , t) is given by

u∗i (w
1
i , t) =

(w1
i )

2

2
·
(

(1− t)2 − t2

n2

)
+ Z

t

n

(
1− t+

t

n

)
and a two-period value of agent i associated with the current tax rate t when first-period
productivity is w1

i and when the second-period equilibrium tax rate is t2
∗

is

Vi(w
1
i , t, t

2∗) = u∗i (w
1
i , t) + δp

[
(1− µ)u∗i (w

1
i , t) +

µ

n

n∑
j=1

u∗j(w
1
j , t)

]
+ δ(1− p)

[
(1− µ)u∗i (w

1
i , t

2∗) +
µ

n

n∑
j=1

u∗j(w
1
j , t

2∗)
] for i = 1, ..., n
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From this, we can obtain the ideal tax rate for each productivity agent by solving the
first-order condition with respect to t and verifying the second-order conditions. Note
that as before the third term in the expression above is a constant with respect to t, thus,

∂Vi(wi, t, t
2∗)

∂t
= (1 + δp(1− µ))

∂u∗i (wi, t)

∂t
+ δpµ

∂ū∗i (t)

∂t
≤ 0

where

∂u∗i (wi, t)

∂t
=

(
Z

n
− w2

i

)
− tn

2 − 1

n2
·
(

2Z

n+ 1
− w2

i

)
.

and

ū∗(t) =
Z

2n

(
(1− t)2 − t2

n2

)
+ Z

t

n

(
1− t+

t

n

)
⇒ ∂ū∗(t)

∂t
= −Z (n− 1)2

n3
t

Then, the first-order condition can be written as

∂Vi(wi, t, t
2∗)

∂t
= (1 + δp(1− µ))

[
Z

n
− w2

i − t ·
n2 − 1

n2
·
(

2Z

n+ 1
− w2

i

)]
− δpµZ (n− 1)2

n3
t

= (1 + δp(1− µ))

(
Z

n
− w2

i

)
− tn

2 − 1

n2

[
(1 + δp(1− µ))

(
2Z

n+ 1
− w2

i

)
+ δpµ

Z(n− 1)

n(n+ 1)

]
≤ 0

The second-order condition is

∂2Vi(wi, t, t
2∗)

∂t2
= −n

2 − 1

n2

[
(1 + δp(1− µ))

(
2Z

n+ 1
− w2

i

)
− δpµZ(n− 1)

n(n+ 1)

]

When w2
i <

Z
n

we have interior solution because there exists t1
∗ ∈ (0, 1) such that

∂Vi(wi, t, t
2∗)

∂t
|t=t1∗ = 0 and

∂2Vi(wi, t, t
2∗)

∂t2
< 0

This interior solution is

t1
∗

i =
n2

n2 − 1

Z
n
− w2

i

Z
n+1

(
2 + δpµ

1+δp(1−µ) ·
n−1
n

)
− w2

i

When w2
i ∈

[
Z
n
, Z
n+1

(
2 + δpµ

1+δp(1−µ) ·
n−1
n

))
, we have ∂2Vi(wi,t)

∂t2
< 0, thus, max ∂Vi(wi,t,t

2∗ )
∂t

=

∂Vi(wi,t,t
2∗ )

∂t
|t=0 = 1

1−δp(1−µ) ·
(
Z
n
− w2

i

)
< 0, thus ∂Vi(wi,t,t

2∗ )
∂t

< 0 for all t ∈ [0, 1], which

means t1
∗

= 0 in this region. Finally, when w2
i > Z

n+1

(
2 + δpµ

1+δp(1−µ) ·
n−1
n

)
, we have
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∂2Vi(wi,t,t
2∗ )

∂t2
> 0 which means that max ∂Vi(wi,t,t

2∗ )
∂t

= ∂Vi(wi,t,t
2∗ )

∂t
|t=1 < 0, and, therefore,

t1
∗

= 0 in this region as well. Combining all the conditions, we obtain

t1
∗

i =


n2

n2 − 1
·

Z
n
− w2

i

Z
n+1

(
2 + δpµ

1+δp(1−µ) ·
n−1
n

)
− (wi)2

if w2
i <

Z

n

0 otherwise

Corollary 1. If δ > 0 and µ > 0 then higher tax persistence leads to lower equilibrium
taxes in the first period.

Proof of Corollary 1.

∂t1
∗

∂p
= − n2

n2 − 1

(
Z

n
− w2

i

)
Z(n− 1)

n(n+ 1)

µδ
(1+δp(1−µ))2[

Z
n+1

(
2 + δpµ

1+δp(1−µ) ·
n−1
n

)
− (wi)2

]2 < 0

Q.E.D.

Corollary 2. If δ > 0 and p > 0 then higher mobility leads to lower equilibrium taxes in
the first period.

Proof of Corollary 2.

∂t1
∗

∂µ
= − n2

n2 − 1

(
Z

n
− w2

i

)
Z(n− 1)

n(n+ 1)

δp(1+δp)
(1+δp(1−µ))2[

Z
n+1

(
2 + δpµ

1+δp(1−µ) ·
n−1
n

)
− (wi)2

]2 < 0

Q.E.D.

Proposition 2. An increase in tax persistence increases inequality in the society - i.e.,

∂var
(
Vi(wi, t

1∗ , t2
∗
)
)

∂p
> 0

Proof of Proposition 2. Here we evaluate ∂ var(Vi(wi,t
1∗ ,t2

∗
))

∂p
where

var(Vi(wi, t
1∗ , t2

∗
)) =

1

n

n∑
j=1

(
Vj(wj, t

1∗ , t2
∗
)− V̄ (t1

∗
, t2

∗
)
)2

and Vi(wi, t
1∗ , t2

∗
) is the long-run (two-period) income of agent i with productivity wi. As
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we showed above Vi(wi, t
1∗ , t2

∗
) can be written as

Vi(wi, t
1∗ , t2

∗
) = (1 + δp(1− µ))u∗i (wi, t

1∗) + µδp · 1

n

n∑
j=1

u∗j(wj, t
1∗)

+ δ(1− p)(1− µ)u∗i (wi, t
2∗) + δ(1− p)µ · 1

n

n∑
j=1

u∗j(wj, t
2∗)

= (1 + δp(1− µ))u∗i (wi, t
1∗) + µδpū∗(t1

∗
) + δ(1− p)(1− µ)u∗i (wi, t

2∗)

+ δ(1− p)µ · ū∗(t2∗)

Moreover,

V̄ (t1
∗
, t2

∗
) =

1

n

n∑
j=1

Vj(wj, t
1∗) = (1 + δp)ū∗(t1

∗
) + δ(1− p)ū∗(t2∗)

Therefore,

var(Vi(wi, t
1∗ , t2

∗
)) =

1

n

n∑
j=1

(
(1 + δp(1− µ))

[
u∗i (wi, t

1∗)− ū∗(t1∗)
]

+ δ(1− p)(1− µ)
[
u∗i )(wi, t

2∗)− ū∗(t2∗)
])2

(1)

Then one obtains:

u∗i (wi, t
1∗)− ū∗(t1∗) = −1

2

(
Z

n
− w2

i

)(
(1− t1∗)2 − (t1

∗
)2

n2

)
and

u∗i (wi, t
2∗)− ū∗(t2∗) = −1

2

(
Z

n
− w2

i

)(
(1− t2∗)2 − (t2

∗
)2

n2

)
Substituting this back into equation (1) gives:

var(Vi(wi, t
1∗ , t2

∗
)) =

1

n

n∑
j=1


1 + δp(1− µ)

2

(
Z

n
− w2

i

)(
(1− t1∗)2 − (t1

∗
)2

n2

)
+
δ(1− p)(1− µ)

2

(
Z

n
− w2

i

)
·
(

(1− t2∗)2 − (t2
∗
)2

n2

)


2

=
1

2n


(1 + δp(1− µ))

(
(1− t1∗)2 − (t1

∗
)2

n2

)
+ (δ(1− p)(1− µ))

(
(1− t2∗)2 − (t2

∗
)2

n2

)


2

n∑
j=1

(
Z

n
− w2

i

)2

≡ 1

2n
A(p, µ, δ)

n∑
j=1

(
Z

n
− w2

i

)2
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where

A(p, µ, δ) =

(
(1 + δp(1− µ))

(
(1− t1∗)2 − (t1

∗
)2

n2

)
+ (δ(1− p)(1− µ))

(
(1− t2∗)2 − (t2

∗
)2

n2

))2

Thus, to determine the sign of the
∂var(Vi(wi,t

1∗ ,t2
∗
))

∂p
we need to determine the sign of

∂A(p,µ,δ)
∂p

.

∂A(p, µ, δ)

∂p
= 2

(
(1 + δp(1− µ))

(
(1− t1∗)2 − (t1

∗
)2

n2

)
+ (δ(1− p)(1− µ))

(
(1− t2∗)2 − (t2

∗
)2

n2

))

·


δ(1− µ)

(
(1− t1∗)2 − (t1

∗
)2

n2

)
+ (1 + δp(1− µ))

(
−2(1− t1∗)− 2t1

∗

n2

)
∂t1

∗

∂p

− δ(1− µ)

(
(1− t2∗)2 − (t2

∗
)2

n2

)


> 0

because ∂t1
∗

∂p
< 0 as we have established in Corollary 1 and

(1− t1∗)2 − (t1
∗
)2

n2
> (1− t2∗)2 − (t2

∗
)2

n2

This completes the proof that long-run inequality increases with an increase in tax per-
sistence, Q.E.D.

3 Infinite Horizon Model with Discounting

The society consists of n > 1 infinitely-lived agents. Otherwise the model is the same
as in the two-period model presented in the text albeit all agents face common discount
factor δ ∈ (0, 1). Given that, in our model, the distribution of productivity types and
the parameters that govern the likelihood of mobility and re-voting on tax policy do
not change over time, agents’ optimal behavior is time-independent. Thus, to ease the
exposition, we suppress the superscript k, which denotes the period of the game.

Optimal labor supply of an agent is characterized by the same formulas described in
Lemma 1 for the two-period model. This is because agents choose labor supply after they
learn their productivity and can perfectly adjust it in every period. Thus, for a given a
tax rate t, an agent with productivity wi supplies x∗i =

(
1− t+ t

n

)
wi.

Next, we characterize preferences for redistribution for each productivity level, assum-
ing that all agents choose their labor supply optimally. Because of the stationarity of the
problem, with the distribution of agent types constant over time, the tax rate in the event
of a tax regime change will always be t∗, which is derived from simultaneously solving the
dynamic program for all n productivity types. The equilibrium value of t∗ will generally
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depend on δ, p and µ. Each agent type, wi, will have a long-run value associated with
the current tax rate, denoted by Vi(wi, t). This generates a system of n equations of the
following form:

Vi(wi, t) = u∗i (wi, t) + δp

[
(1− µ)Vi(wi, t) +

µ

n

n∑
j=1

Vj(wj, t)

]

+ δ(1− p)

[
(1− µ)Vi(wi, t

∗) +
µ

n

n∑
j=1

Vj(wj, t
∗)

]
for i = 1, ..., n,

(2)

where u∗i (wi, t) is the optimal current period utility of an agent with productivity wi if
the current tax rate is t. Using Lemma 1, one obtains:

u∗i (wi, t) =
w2
i

2
·
(

(1− t)2 − t2

n2

)
+ Z · t

n

(
1− t+

t

n

)
, (3)

as the utility of a type wi agent in the current period if the current tax rate is t.

This system of equations is then solved to obtain {Vi(wi, t)}i=1,...,n. From this, one
obtains the ideal tax rate for each agent type by solving the first-order condition with
respect to t, and verifying second-order conditions.

Proposition 1. The ideal tax rate of agent i with productivity wi is

t∗i (wi) =


n2

n2 − 1
·

Z
n
− (wi)

2

Z
n+1

(
2 + µδp

1−δp ·
n−1
n

)
− (wi)2

if (wi)
2 <

Z

n

0 otherwise.

Proof of Proposition 1: The proof follows the same steps as the proof of Proposition
1 for the two-period model.

When agents are completely impatient, δ = 0, or there is no mobility, µ = 0, or
taxes are non-persistent, p = 0, the model reduces to the one-period model analyzed in
Agranov and Palfrey (2015). At the other extreme, if agents are perfectly patient - i.e.,
δ → 1 - and tax rates are fully persistent - i.e., p = 1 - then for all µ > 0, we obtain
that all agents, including those with the lowest current productivity, prefer no taxation
and no redistribution since the expectation of future mobility outweighs the benefits of
redistribution today, regardless of their current economic status: all they care about is
their long-run average after-tax income, which is maximized at t = 0. In intermediate
cases, δ ∈ (0, 1) and p ∈ (0, 1), agents with relatively low current productivity (below the
mean) demand positive taxes, while those with relatively high productivities prefer zero
taxation since their contribution to total collected taxes exceeds the tax refund that they
would receive from redistribution. One can show that each voter’s indirect preferences
over tax rates are single-peaked, so the equilibrium tax rate depends on the preferences
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of the median-productivity agent: since (wm)2 < Z
n

, the majority rule equilibrium is a
positive tax rate coinciding with the ideal tax rate of the median voter - i.e., t∗m.

The comparative statics results obtained in the two-period model hold true in the
infinite-horizon model as well.

Corollary 1. If δ > 0 and µ > 0, then higher tax persistence leads to lower equilibrium
taxes.

Proof of Corollary 1:

∂t∗

∂p
= − n2

n2 − 1
·

(
Z
n
− (wm)2

)(
Z
n+1

[
2 + µδp

1−δp ·
n−1
n

]
− w2

m

)2 · Z

n+ 1
· µδ(n− 1)

(1− δp)2n
< 0

All else equal, the longer the current tax regime lasts (the higher the p), the more likely
currently low-productivity agents are to transition upwards and improve their economic
status, in which case they would enjoy lower tax rates, Q.E.D.

Corollary 2. If δ > 0 and p > 0, then higher mobility leads to lower equilibrium taxes.

Proof of Corollary 2:

∂t∗

∂µ
= − n2

n2 − 1
·

(
Z
n
− (wm)2

)(
Z
n+1

[
2 + µδp

1−δp ·
n−1
n

]
− w2

m

)2 · Z

n+ 1
· δp(n− 1)

(1− δ)n
< 0

Agents with relatively low productivity today have a greater chance of upward mobility
in the future when reshuffling probability µ increases, all else equal. Observe that there
is also a counteracting effect by the higher types’ prospect of downward mobility, which
one might think would put upward pressure on the equilibrium tax rate. However, there
is no such effect in equilibrium because the median voter’s income is always below the
average income, Q.E.D.

The comparative statics results with respect to inequality are also similar to the two-
period model.

Proposition 2. An increase in tax persistence increases inequality in the society - i.e.,

∂var (Vi(wi, t
∗))

∂p
> 0.

Proof of Proposition 2: The proof follows the same steps as the proof of Proposition
2 for the two-period model.
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3.1 Productivity trends

Suppose that (real) wages increase at rate α > 1. That is, if there were no mobility then
w2
i = αw1

1, for every i = 1, ..., n. The value function for a voter i with wage wi in period
1 is:

Vi(wi, t;α) = u∗i (wi, t) + δp

[
(1− µ)u∗i (αwi, t) +

µ

n

n∑
j=1

u∗i (αwj, t)

]

+δ(1− p)

[
(1− µ)u∗i (αwi, t

2∗) +
µ

n

n∑
j=1

u∗j(αwj, t
2∗)

]
(4)

where

u∗i (wi, t) =
(wi)

2

2

(
(1− t)2 − (t)2

n2

)
+ Z

t

n

(
1− t+

t

n

)
and therefore:

u∗i (αwj, t) =
(αwj)

2

2

(
(1− t)2 − (t)2

n2

)
+ α2Z

t

n

(
1− t+

t

n

)
= α2u∗i (wj, t).

Thus, equation (4) can be rewritten as:

Vi(wi, t;α) = u∗i (wi, t) + α2δp

[
(1− µ)u∗i (wi, t) +

µ

n

n∑
j=1

u∗i (wj, t)

]

+α2δ(1− p)

[
(1− µ)u∗i (wi, t

2∗) +
µ

n

n∑
j=1

u∗j(wj, t
2∗)

]
. (5)

This is exactly the same as before except δ is replaced with δ′ = α2δ. Recall that when
α = 1 the first period equilibrium tax rate is:

t1
∗

i (wm) =
n2

n2 − 1
·

Z
n
− (wm)2

Z
n+1

(
2 + µδp

1+δp(1−µ) ·
n−1
n

)
− (wm)2

.

Hence:

t1
∗

i (wm;α) =
n2

n2 − 1
·

Z
n
− (wm)2

Z
n+1

(
2 + µα2δp

1+α2δp(1−µ) ·
n−1
n

)
− (wm)2

which is strictly positive and strictly decreasing in α, since µδp
1+δp(1−µ) is increasing in δ,

Q.E.D.

The comparative statics results also remain unchanged. Also note that equilibrium
tax rates will also decrease relative to the one-period model even for some α < 1.
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3.2 Random shocks to aggregate productivity

Suppose that (real) each wage can either increase by a factor of (1 + ε) or decrease by a
factor of (1− ε), with equal probability. That is, for each i, if there were no mobility then
w2
i = (1 + ε)w1

i with probability 1/2 and w2
i = (1 − ε)w1

i with probability 1/2, for some
ε ∈ (0, 1), and these shocks are independent.1 In this case, the value function for a voter
i with wage wi in period 1 is:

Vi(wi, t; ε) = u∗i (wi, t) + δp


(1− µ)

(
u∗i ((1 + ε)wi, t)

2
+
u∗i ((1− ε)wi, t)

2

)
+
µ

n

n∑
j=1

(
u∗i ((1 + ε)wj , t)

2
+
u∗i ((1− ε)wj , t)

2

)


+δ(1− p)


(1− µ)

(
u∗i ((1 + ε)wi, t

∗
2)

2
+
u∗i ((1− ε)wi, t

∗
2)

2

)
+
µ

n

n∑
j=1

(
u∗i ((1 + ε)wj , t

∗
2)

2
+
u∗i ((1− ε)wj , t

∗
2)

2

)


= u∗i (wi, t) + (1 + ε2)δp

(1− µ)u∗i (wi, t) +
µ

n

n∑
j=1

u∗i (wj , t)


+(1 + ε2)δ(1− p)

(1− µ)u∗i (wi, t
2∗) +

µ

n

n∑
j=1

u∗j (wj , t
2∗)



This is exactly the same as equation as before except δ is replaced with δ′ = (1 + ε2)δ.
Recall that when α = 1 the first period equilibrium tax rate is:

t1
∗

i (wm) =
n2

n2 − 1
·

Z
n
− (wm)2

Z
n+1

(
2 + µδp

1+δp(1−µ) ·
n−1
n

)
− (wm)2

.

Hence:

t1
∗

i (wm, ε) =
n2

n2 − 1
·

Z
n
− (wm)2

Z
n+1

(
2 + µ(1+ε2)δp

1+(1+ε2)δp(1−µ) ·
n−1
n

)
− (wm)2

which is strictly positive and strictly decreasing in ε, since µδp
1+δp(1−µ) is increasing in δ,

Q.E.D.

The comparative statics results also remain unchanged.

1The analysis below is identical if instead one assumes all the productivity shocks are perfectly corre-
lated.
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4 Instructions for M2 treatment

Welcome. You are about to participate in an experiment on decision-making and you
will be paid for your participation in cash privately at the end of the session. Do not talk
to or attempt to communicate with other participants during the session. Please take
a minute and turn off all electronic devices, especially phones. During the experiment
you are not allowed to open or use any other applications on these laboratory computers,
except for the interface of the experiment.

The experiment consists of three parts. Each part is self-contained. Before the begin-
ning of each part, we will read out loud detailed instructions about that part.

The currency in this experiment is called points. All payoffs are denominated in this
currency. Points that you earn during the experiment will be converted into US dollars.
We will sum up your earnings in all three parts of the experiment, add a $7 participation
fee for the completion of the experiment and pay it to you in private in cash at the end
of the experiment. The money you earn will depend on your decisions and the decisions
of others.

Part I. In this part of the experiment you are endowed with 100 points. Your task is
to choose how many points you wish to invest in a risky project. You can choose any
number of points between 0 and 100 points, inclusive. Those points not invested are yours
to keep.

The Risky Project: there is a 50% chance that the risky project will be successful. If
it is successful, you receive 2.2 times the amount you chose to invest. If the project is
unsuccessful, you lose the amount invested. To determine if the project is successful or
not the computer will flip a computerized fair coin. If the coin will land on heads then
the project is successful and if it will land on tails then project is unsuccessful.

Example: Say you invested X out of 100 points in the risky project, where X represents
your choice. (Recall, it can be any number between 0 and 100, inclusive.) Then, with
probability 50% you will receive (100−X) + 2.2 ∗X points and with probability 50% you
will receive (100−X) + 2.2 ∗ 0 = 100−X points.

In this part of the experiment 50 points = $1. Your earnings in this task will be added
to your earnings in the next part of the experiment.

Please write down the station number you are sitting in:

Please write down how many points you want to invest in the risky project:

(this can be any number between 0 and 100)

Part II. There will be 10 rounds in this part of the experiment. Before the first round
begins, all participants will be randomly divided into groups of 5 participants each. In
addition, each participant will be assigned a value V . There are two possible values of V :
V = 5 and V = 10. We have 25 participants in this experiment: fifteen participants will
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be assigned value of V = 5 and ten participants will be assigned value of V = 10. In all
groups, there will be three members with V=5 and two members with V = 10.

Your group assignment and your assigned value V will stay the same for all 10 rounds
of Part II. The computer does these assignments randomly. Your assigned value will be
displayed on your computer screen.

Your task in each round is to choose an investment level. Your investment can be any
number between 0 and 15 (up to two decimal places). If you choose investment X and
your value is V , this will generate your total investment earnings equal to V · X. For
example, if V = 10 and X = 4, then your total investment earnings in that round are
computed by 10 ∗ 4 = 40 points.

However, investment is not free. The cost to you of investing X is equal to 0.5 ·X2.
In the example just given, the investment of X = 4 costs you 8 points. These costs are
subtracted from your earnings at the end of the round.

A portion of your investment earnings for the round will be taxed. If the tax rate is
T%, then your taxes will equal T% of your investment earnings, and you will keep the
remaining (100 − T )% of your investment earnings. The amount you keep after taxes is
called your after tax investment earnings. Recall the example just given, where V = 10
and X = 4, and your total investment earnings is 40 points. If the tax rate is 50% then
your taxes equal 20 points and your after tax investment earnings, which are yours to
keep, equal 20 points.

The taxes everyone in your group pays are not thrown away. Rather, the total taxes
collected from all members of your group are rebated to the group members in equal
shares at the end of each round. For example, if the total amount collected as taxes from
all members of the group equals 100 points, then each member will receive back one fifth
of this amount, or 20 points. Note that all members of the group are taxed at the same
tax rate in a round, and all group members share equally the total taxes collected in the
group.

To summarize, your total earnings in a round depend on the value V assigned to you
at the beginning of round 1, your investment X, tax rate T and the tax rebate, which
is determined by the total taxes collected from all members in your group. Your total
earnings in a round consist of three parts:

Total Earnings = Your After Tax Investment Earnings−Your Cost of Investment + Tax Rebate

• After-Tax Earnings = (1− T )% of V ·X

• Cost of Investment = 0.5 ·X2

• Tax Rebate = 1
5
·Taxes collected in your group

• Taxes collected in your group = T ·Investment Earnings of 1 + T ·Investment Earn-
ings of 2 + T ·Investment Earnings of 3 + T ·Investment Earnings of 4 + T ·Investment
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Earnings of 5

Thus, your total earnings for the round in this example would be equal to 20−8+20 =
32 points.

At the beginning of each round a tax rate T will be displayed on your screen. This
tax rate is the same for all members in your group. However, your group’s tax rate may
change from round to round. After observing your group’s tax rate, you and all other
members of your group will be asked to independently choose your investment levels,
which can be any non-negative number between 0 and 15 up to two decimal places.

The screen has a calculator to assist you in deciding how much to invest in each round.
The calculator calculates hypothetical earnings for each of the two possible values that
your group members have (V = 5 and V = 10). In particular, this calculator calculates
your hypothetical earnings in different scenarios.

Here is how the calculator works. In the first row of the calculator, you need to choose
value for which you would like to calculate hypothetical earnings. There is a drop-down
menu with two options V = 5 and V = 10. The second row of the calculator displays
your group’s tax rate. In the third row of the calculator, you need to enter a hypothetical
investment level and a hypothetical amount of total taxes from the other four members
of your group in the fourth row. The last row (the fifth one) then displays total earnings
of a member with chosen value if those hypothetical amounts were the actual amounts
in that round. You can use the up and down buttons to try calculate payoffs in different
hypothetical scenarios. (If you enter these manually instead of using the buttons, you will
need to press “Enter” for the calculator to work.) The numbers you enter in the calculator
are just hypothetical and do not affect yours or someone else’s actual earnings. Remember
that your and everyone’s else tax rebate consist of one fifth of the taxes collected from
one own investment earnings and one fifth of the taxes collected from the other group
members.

After everyone has entered their investment decision and clicked on the “Submit”
button the computer will display your investment decision as well as the investment
decisions made by the all other members of your group. It will appear in a table that also
shows their values. All of your own information is highlighted in Red on the table. It will
also show your earnings for the round, in points, broken down into its three components:
after tax investment income, cost of investment, and tax rebate. All of this information
is also summarized at the bottom of your screen in the history panel. The history panel
will keep track of everything that has happened in your group in all rounds, highlighting
your own information in red.

When round 1 is finished, we will move on directly to the next round. The next round
will be identical to the previous round except your group’s new tax rate T will be posted
on your screen.

At the end of Part II, we will sum up all the points that you earned in all 10 rounds
of Part II and will convert them into US dollars using the rate 40 points = $1. Summary:
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• There are 10 rounds in this part of the experiment.

• At the beginning of the first round, each participant is assigned one of the two
possible values: fifteen participants get value V = 5 and ten participants get value
V = 10.

• Also, at the beginning of the first round, participants are randomly matched into
groups of five members each with three members with value V = 5 and two members
with V = 10.

• Group assignment and value assignment stays the same for the whole duration of
this part of the experiment.

• At the beginning of each round, all members of the group observe the tax rate for
this round.

• After that, all group members are asked to choose an investment level (number
between 0 and 15 with up to two decimal places).

• After that, decisions and earnings for that round are displayed on your screen and
recorded in the history panel.

Part III. Part III of the experiment consists of 10 matches, and each match consists of
2 rounds. The group assignments do not change. They are exactly the same as in Part II
and you will remain in the same group in all rounds of all matches in Part III.

In the first round of all 10 matches, you will have the same value that you had in Part
II of the experiment. Your value in the second round of a match may be the same or may
be different from the one you had in the first round. It is determined as follows: with
probability 40% your value in the second round of a match will be the same as your value
in the first. However, with probability 60% the computer will randomly assign values
between the members of your group, so that there are still three members with value
V = 5 and two members with value V = 10. In other words, if you have value V = 5 in
the first round, then with probability 40% + 60% · 3

5
= 76% you will keep V = 5 in the

second round and with probability 60% · 2
5

= 24% you will get the new value of V = 10
for the second period. If, on the other hand, you have value V = 10 in the first round,
then with probability 40% + 60% · 2

5
= 64% you will keep V = 10 in the second round and

with probability 60% · 3
5

= 36% you will get the new value of V = 5 for the second round.
Your value in each round of each match will be clearly displayed on the computer screen.

Each round in Part III is similar to Part II, except that in each match at the beginning
of the first round all members of the group are asked to submit a proposal for the tax
rate T.

While you are deciding what tax rate you wish to propose, the screen has a calculator
to assist you in deciding. You can calculate hypothetical earnings for a round as follows.
First choose from the drop-down menu for which value you are calculating hypothetical
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earnings. In the second row, enter a hypothetical group tax rate. In the third row,
enter a hypothetical investment decision of the member with the value chosen by you in
the first row. Finally, in the fourth row, enter a hypothetical total taxes amount from
the other four members of your group. You can use the up and down buttons to try
different hypothetical levels. The fifth (and the last) row then displays what would be
total earnings for the chosen member in a round if those hypothetical amounts were the
actual amounts. (If you enter these manually instead of using the buttons, you will need
to press “Enter” for the calculator to work.) The numbers you enter in the calculator are
just hypothetical and do not affect your actual earnings.

After each member of your group has submitted a proposed tax rate, the third highest
of the five proposed tax rates is implemented as your group’s tax rate in both rounds of
this match. The chosen tax rate will be clearly posted on your screen and is the same
for everyone in your group. You will then be asked to choose an investment decision (as
you did in the Part II of the experiment). Your investment decision can be any number
between 0 and 15 up to two decimal places. You may use the calculator to explore different
hypothetical scenarios, as you did in Part II.

Once everyone in your group have submitted their investments, your payoff for the
first round of a match will be determined and we move on to the second round of the
current match.

At the beginning of the second round, you will observe your value for the second round,
which may be the same as your value in the first round or different. It is determined based
on the mechanism described above. Then you will be reminded of the tax rate chosen by
your group in the first round. After that you will be prompted to choose your investment
level. After all members of your group choose their investment level, you will observe
your earnings in the second round.

After the first match is over, we will move on to the second match, in which you will
first observe your value for the first round and then will be asked to submit a proposal
for the tax rate for your group. The third highest proposal will be implemented as your
group tax rate in both rounds of a match.

To remind you, as before, your earnings in each round depend on your value, your
chosen investment X, tax rate T and the tax return, which is determined by the total
taxes collected from all members in your group.

Total Earnings = Your After Tax Investment Earnings−Your Cost of Investment + Tax Rebate

• After-Tax Earnings = (1− T )% of V ·X

• Cost of Investment = 0.5 ·X2

• Tax Rebate = 1
5
·Taxes collected in your group
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• Taxes collected in your group = T ·Investment Earnings of 1 + T ·Investment Earn-
ings of 2 + T ·Investment Earnings of 3 + T ·Investment Earnings of 4 + T ·Investment
Earnings of 5

At the end of Part III, we will sum up all the points that you earned in all 10 matches of
Part III and will convert them into US dollars using the rate 40 points = $1.

4.1 Screenshots for M2 treatment
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5 Additional Analysis

5.1 Labor Supply Decisions

The next two tables, replicate analysis discussed in the main text of the paper using differ-
ent regression specifications. In particular, Table 1 presents estimates of the normalized
labor supply functions for each period of the game separately using the data from all 10
repetitions of the game in each treatment. Table 2 pools both periods of the game to-
gether, focuses on the last 5 games and clusters standard errors at the individual (rather
than at the group) level.

Table 1: Estimated Normalized Labor Supply in Each Period (all 10 matches)

NM treatment M1 treatment
const (se) slope (se) const (se) slope (se)

Poor (period 1) 0.98 (0.02) -0.73 (0.06) 1.02 (0.02) -0.79 (0.06)
Poor (period 2) 0.99 (0.01) -0.78 (0.04) 0.99 (0.02) -0.71 (0.05)
Rich (period 1) 0.99 (0.04) -0.77 (0.07) 1.01 (0.03) -0.84 (006)
Rich (period 2) 0.96 (0.04) -0.71 (0.06) 1.01 (0.02) -0.82 (0.06)

M2 treatment M3 treatment
const (se) slope (se) const (se) slope (se)

Poor (period 1) 1.00 (0.03) -0.65 (0.08) 0.97 (0.02) -0.68 (0.07)
Poor (period 2) 0.99 (0.03) -0.60∗∗ (0.09) 0.99 (0.02) -0.72 (0.06)
Rich (period 1) 1.03 (0.03) -0.90 (0.06) 0.99 (0.01) -0.75 (0.03)
Rich (period 2) 0.94∗∗ (0.03) -0.72 (0.09) 0.92∗∗ (0.02) -0.67 (0.07)

Notes: Random effects TOBIT regressions of normalized labor supply decisions regressed on implemented

tax rates and a constant, using data from each of the periods separately. Robust standard errors are

clustered at the group level and reported in the parenthesis. Normalized labor supply is labor supply

divided by productivity. ∗∗ indicates that theoretically predicted value of a coefficient falls outside of

95% confidence interval of estimated coefficients.

5.2 Proposed Taxes

Figure 1 depicts cumulative distribution functions of tax rates proposed by poor and
rich agents in the experienced matches in each treatment separately. Few patterns are
apparent from these figures and statistical analysis. First, poor subjects propose higher
tax rates than rich subjects in every single treatment. Regression analysis, in which we
regress proposed taxes on a dummy variable that indicates rich subject while clustering
standard errors by individuals confirms this result at the standard 5% significance level.
Second, poor subjects propose lower tax rates when taxes are persistent as in M2 and
M3 treatments compared with treatments in which taxes can be adjusted in every period
of the game as in NM and M1 treatments. This can be seen from left panel of Figure 1
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Table 2: Estimated Normalized Labor Supply in Experienced Matches

NM treatment M1 treatment
const (se) slope (se) const (se) slope (se)

Poor 0.96 (0.02) -0.73 (0.05) 0.98 (0.02) -0.66∗∗ (0.04)
Rich 0.96 (0.03) -0.69 (0.06) 0.98 (0.02) -0.77 (0.05)

M2 treatment M3 treatment
const (se) slope (se) const (se) slope (se)

Poor 1.02 (0.02) -0.76 (0.08) 0.98 (0.02) -0.73 (0.05)
Rich 0.96 (0.02) -0.72 (0.08) 0.96 (0.02) -0.76 (0.04)

Notes: Random effects TOBIT regressions of normalized labor supply decisions regressed on implemented

tax rates and a constant, using data from each of the periods separately. Robust standard errors are

clustered at the subject level and reported in the parenthesis. Normalized labor supply is labor supply

divided by productivity. ∗∗ indicates that theoretically predicted value of a coefficient falls outside of

95% confidence interval of estimated coefficients.

as distributions of taxes in NM and M1 treatments first-order stochastically dominates
distributions of taxes in M2 and M3 treatments. Regression analysis corroborates this
conclusion with significant difference detected between average proposed taxes in NM and
M2 treatments (p = 0.058) and NM versus M3 treatments (p = 0.045). The comparison
of average taxes between M1 and M2 or M3 treatments are not statistically significant
despite first-order stochastically dominance relation.

Figure 1: CDFs of Taxes Proposed by Poor and Rich in Experienced Matches
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Notes: For NM and M1 treatments, we pool together data from period 1 and period 2 of the game.
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5.3 Inequality

Here we consider treatment effects on inequality levels using a GINI coefficient instead
of variance of long-run payoffs. Figure 3 depicts cumulative distribution functions of
estimated GINI coefficients across treatments using the data from the last five matches.
To compare GINI coefficients between two treatments we use regression analysis, in which
we regress estimated GINI on a constant and a dummy variable that indicates one of the
considered treatments, while clustering observations by groups. We conclude that there
is a significant difference between two treatments if estimated coefficient on the indicator
function is statistically different from zero at the standard 5% significance level and report
p-value associated with it.

Figure 2: CDFs of GINI Coefficients in Experienced Matches
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Notes: For NM and M1 treatments, we pool together data from period 1 and period 2 of the game.

Similar to Hypothesis 4 described in the main text of the paper, for parameters used
in our experiments, for a given level of mobility, higher tax persistence leads to higher
inequality as measured by GINI coefficients. This prediction is born out in our data as
the distribution of GINI coefficients observed in M1 treatment first-order stochastically
dominates the one observed in M2 treatment, which differ only in the stickiness of the
tax regime. Regression analysis confirms prediction this with p = 0.025.

The same is true for Hypothesis 5, according to which higher mobility leads to lower
inequality both when taxes are persistent and when taxes are re-voted in every period.
Consistent with this prediction, we observe that inequality decreases when mobility is
introduced in the absence of tax persistence (NM versus M1 treatments) albeit the effect
is not statistically significant (p > 0.10). Similarly, when taxes are persistent, distribution
of GINI coefficients observed in M3 treatment first-order stochastically dominates the one
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in M3 treatment, which indicates that higher mobility promotes equality even when tax
regime is sticky. However, this shift is not significant according to regression analysis.

5.4 Risk Attitudes

As described in the paper, we administered standard incentivized risk attitude task to all
our subjects in order to see whether risk attitudes affect individual behavior in the M2
and M3 treatments. Theoretically, there should be no effect of risk attitudes in the NM
and M1 treatments, in which taxes are not persistent.

Figure 3 shows that there were no systematic differences between risk attitudes of
poor and rich subjects in the M2 and M3 treatments. Statistical tests confirm that with
p > 0.10.

Figure 3: Kernel Distributions of Risky Investments by First-Period Poor and Rich Sub-
jects in M2 and M3 Treatments.
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Figure 4 depicts tax rates proposed by poor and rich agents in M2 and M3 treatments
plotted against risk attitudes of these subjects. A clear picture emerges from this: risk
attitudes are not a good predictor of tax rates proposed by subjects.
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Figure 4: Tax Rates Proposed by First-Period Poor and Rich Subjects in M2 and M3
Treatments.
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5.5 Treatment differences in the last 3 matches

In this section we repeat the analysis conducted in the main manuscript while focusing
on the last 3 repetitions of the game in each treatment. This exercise is meant to show
that our qualitative conclusions do not change if one focuses on the different subset of the
data which corresponds to the ‘post-learning period’.

Table 3 depicts average implemented tax rates in each treatment as well as inequality
levels in each treatment using the data from the last 3 games in each experimental session.

Table 3: Average Implemented Tax Rates and Inequality Levels in the last 3 games

NM (t∗ = 0.47) M1 (t∗ = 0.47) M2 (t∗ = 0.38) M3 (t∗ = 0.30)
(p, µ) = (0, 0) (p, µ) = (0, 0.6) (p, µ) = (1, 0.6) (p, µ) = (1, 1)

mean (se) mean (se) mean (se) mean (se)

Average Tax Rates
Period 1 0.37 (0.05) 0.32 (0.04)
Period 2 0.35 (0.05) 0.30 (0.03)
Periods 1&2 pooled 0.36 (0.05) 0.31 (0.03) 0.21 (0.03) 0.16 (0.03)

Inequality Levels 360.10 (89.13) 287.78 (60.98) 464.81 (54.37) 429.20 (50.11)

Notes: t∗ depicts the theoretically predicted equilibrium tax rate in each treatment. For M2 and M3

treatments, tax rates in two periods are the same by design. We list those in the line that corresponds

to Periods 1&2 pooled data. Robust standard errors are in parentheses, clustered by group. Inequality

levels are measured by the variance of agents’ total income, which consists of agents’ utilities in both

periods of the game including after-tax income, costs of labor and tax rebates.

Hypothesis 1 states that when taxes are not persistent, prospects of income mobility
should have no effect on equilibrium tax rates. To evaluate this hypothesis, we compare
implemented tax rates in NM and M1 treatments. Statistical analysis reveals that this
hypothesis is borne out in our data when using the implemented tax rates in the last 3
games in each session (p = 0.404).

Hypothesis 2 states that for a fixed mobility, higher tax persistence should lead to
lower equilibrium tax rates. To evaluate this hypothesis, we compare implemented tax
rates in M1 and M2 treatments. This hypothesis is also borne out in our data in the last
3 games (p = 0.036).

Hypothesis 3 asserts that for a fixed and positive level of tax persistence p, an increase
in mobility parameter µ should lead to lower equilibrium tax rates. To evaluate this
hypothesis, we compare implemented tax rates in M2 and M3 treatments. While there is
no statistical difference between average implemented tax rates in M2 and M3 treatments
in the last 3 games (p = 0.167), we find that median implemented tax rate in M3 is
significantly lower than median implemented tax rate in M2 (p = 0.057).

Hypothesis 4 states that for a fixed mobility level µ, an increase in the persistence
of taxes leads to higher inequality. Comparison between inequality levels in M1 and M2

24



treatments confirms this prediction using the data from the last 3 games (p = 0.034).

Finally, Hypothesis 5 predicts that higher mobility should lead to lower inequality both
when taxes are persistent and when taxes are re-voted in every period. Both for the case of
non-persistent taxes and for the case of persistent taxes, our data indicates that inequality
levels are lower when mobility is higher, consistent with theoretical hypothesis. However,
the effect is quite small in magnitude and not statistically significant at the standard
significance level (p = 0.503 for the comparison between NM and M1 treatments and
p = 0.630 for the comparison between M2 and M3 treatments).
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