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Suppose a researcher has information on several at-
tributes of a collection of individuals and that the data
he has are available only in qualitative (synonyms are
categorical, discrete, polytomous, or ordinal- or nom-
inal-level), as opposed to quantitative (continuous or
interval-level) form. For instance, imagine that his in-
£armation is about yes or no votes, occupational classes,
or age groups, but none is in the form of, say, the dollar
amounts of property held (not broken into categories)
or the length of residence, in months or years, at a par-
ticular location. Then he might construct tables, such as
Table 1, which show how many people have each set of
traits; for example, how many young, unskilled, child-
less men in a sample were found in both the Boston
census schedule in 1880 and the city directory in 1890.
When there is very little information available, say, data
on only two or three variables, commonsensical
methods of analysis may suffice. But what should one
do when one is confronted by such monsters as the
eighty-celled ‘‘four-way’’ Table 1?

The conventional historical answer to this question
has been to combine the categories (or, to put it another
way, to collapse the table) into what are called
“‘marginal tables,” relating two or perhaps three
variables, as in the panels in Table 5, below. While this
is useful and often informative, the practice may hide
information which is available in the full table. For-
tunately, in the past fifteen years statisticians have
developed new methods for squeezing many more con-
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clusions out of such tables. Historians have made too
little use of the new techniques, generally denominated
““log-linear contingency table analysis,”” probably
because the initial articles and books explaining them
were somewhat obscurely phrased and were not easily
accessible to those who lacked fairly advanced statistical
training. Now that there are simpler texts on the market
and several computer programs available, it is time that
many more historians took advantage of them.

This paper is intended to provide both an intuitive
and a practical mathematical understanding of the log-
linear technique, demonstrate its usefulness by reex-
amining an important historical topic, and, by making
every step in the development and application of the
technique explicit, using the notation now common in
the literature, encourage and prepare historians to make
use of log-linear analysis as well as to be able to go on to
more advanced treatments in statistics texts. Those who
desire a brief overview of the subject may wish to save
Section 111, in which we lay out the algebra step by step,
for a second reading, while those already familiar with
or indifferent to log-linear methods may wish to skip
Sections I through V. We will also attempt to show how
social scientific theory can help to guide data analysis
and shall emphasize a hitherto often overlooked facet of
a much-studied historical problem. Thus we hope to
blend substantive with methodological points. Written
at a fairly elementary level and self-contained, the paper
assumes only that one has a speaking acquaintance with



such statistical concepts as Chi-Square tests and regres-
sion analysis.

I. Historical Mobility Studies

Before beginning the statistical discussion, let us briefly
introduce the substantive problem with which we shall
be concerned throughout this article. During the past
two decades, many historians have investigated
geographic and social mobility in nineteenth century
American cities. Aimed primarily at systematically
describing those characteristics of individuals which
were associated with changes in residence and in oc-
cupational or social rank, their works have related both
types of mobility to such variables as age, occupation,
family social status, property holdings, ethnic origins,
and generation of residence in America.! Drawing on
such previously unexploited sources as federal and state
manuscript censuses, city directories, and tax assess-
ment rolls, the ‘‘new social historians’’ have attracted a
good deal of attention by taking advantage of the
chance these sources offer to study the lives of large
numbers of individuals who have previously eluded the
view of historians.

Yet these scholars have failed to make use of the
available statistical methods and social scientific theory
as fully as they have ransacked the sources. More
specifically, they have generally related only two or
three variables to each other, thereby in effect assuming
that the numerous ‘‘independent variables’ in their
mobility analyses were uncorrelated with each other;
their implicit statistical models, furthermore, generally
assume, without testing, that the relationships they seek
are linear. By focusing on the different correlates of
mobility only one or two at a time, they have generally
settled for mere description, instead of confronting
directly the problem of building a cohesive explanation.
And their analyses have been less well informed by
social scientific theory, particularly economic theory,
than they might have been. We shall illustrate how these
problems might have been largely obviated by reanalyz-
ing data on geographic mobility gathered by Stephan
Thernstrom for his study The Other Bostonians, which
traces individuals from the 1880 federal manuscript cen-
sus to the 1890 city directories of Boston and its
suburbs.?

From Thernstrom’s data set, we have chosen three
factors which all plausibly bore on the 1880 Bostonian’s
decision to move or stay: family status, which we will
call ““S*”> and which we cut into two groups: the first,
single or married but childless, and the second, married
with children; occupation, or *‘O,”’ which we broke into
five classes: high white collar, low white collar, skilled,
unskilled, and unemployed; and age, or *“4,’’ which we
cut into four sets: 14-20, 21-30, 31-60, and over 60.3
The number of people in the sample with each set of
traits in both 1880 and 1890 is displayed in the four
panels of Table 1. Since it is probable that some of those
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Table 1.—Number of males persisting, 1880-90, by age,
family status, and occupation

Occupation

Age Hi.W. Lo.W. SK. UNSK. UNEMP. TOTAL

Panel A: Single or Married without Children, Persistent

14-20 1 51 21 57 106 236
21-30 13 72 50 54 17 206
31-60 7 12 11 13 1 44
61+ 1 1 0 0 0 2
TOTAL 22 136 82 124 124 488
Panel B: Single or Married without Children,
Not Found in 1890
14-20 1 28 11 37 46 123
21-30 9 36 37 61 9 152
31-60 2 1 10 11 1 25
61+ ° 0 0 0 0 2 2
TOTAL 12 65 58 109 58 302
Panel C: Married with Children, Persistent
14-20 0 0 0 0 0 0
21-30 2 16 22 33 1 74
31-60 94 98 168 162 6 528
61+ 9 3 1 9 1 23
TOTAL 105 117 191 204 8 625
Panel D: Married with Children, Not Found in 1890
14-20 0 0 0 0 0 0
21-30 2 6 14 17 1 40
31-60 29 43 68 99 1 240
61+ 8 3 5 8 5 29
TOTAL 39 52 87 124 7 309

*The occupational categories are high white collar, low white collar,
skilled, unskilled, and unemployed. The classification of occupation
into categories was done by Thernstrom.

who were not listed in the 1890 directory were simply
‘overlooked by the canvassers but were still present in the
Boston area, we sill hereafter refer to the division of the
sample as those who were “‘found’’ and ‘“‘not found”’
rather than as “‘stayers’’ and ‘‘movers’’ or ‘‘persisters’’
and ‘‘nonpersisters.’’* To avoid confusion with the con-
ventional notation in the statistical literature, however,
we will label the variable ‘M.’

The relationship of migration with occupation plays a
large role in Thernstrom’s explanation, that with age is
stressed in the economics literature, and that with
children taps the notion that familial responsibilities
constrain. We also initially included measures of home
ownership, the number of generations a man had been
in America, and ethnicity in order to attempt to measure
some of the effects, respectively, of different levels of
transactions costs involved in the decision to move,
rootedness, and a possible high degree of employment



discrimination (especially against the Irish) in Boston.
But these three variables were either so closely related to
age, occupation, and family status or had so little im-
pact that they did not add much to our explanation. In
the interest of simplifying the discussion, therefore, we
have left them out of the analysis presented here.

I1. Simple Manipulations of Tables

Before beginning the analysis, we need to define a few
terms and establish some appropriate conventions. To
identify each cell in a table, let us refer to each by a set
of subscripts, beginning with ‘‘1”> or, more generally,
with ¢i’* and proceeding by integers or alphabetically as
long as we need them. Thus, the cells in Table 1 are
identified by four letters or integers. Here and
throughout this paper, the variables will be considered
in the order M, A4, S, O. For instance, the entry in the
bottom right-hand corner in Table 1 is referred to as the
@, 4, 2, 5) cell, or that in which the value of M is ar-
bitrarily called 2, the value of 4 is termed 4, the value of
S is 2, and the value of O is 5. Substantively, the cell
represents the number of people present in 1880 who
were not found in 1890 and who had been aged 61 or
older, had children, and were unemployed in 1880. We
will refer to the actual cell entries by small fs, and we
will subscript them by numbers or by i, j, k, etc. For ex-
ample, fos = 5. Estimates of the cell entries, obtained
by procedures to defined later, will be designated by
capital F’s. When we sum across all values of a variable
(for example, when we add the people in all age
categories together but preserve our knowledge of their
occupations, family statuses, and whether or not they
were found in 1890), we will replace the relevant
subscript with a ‘‘plus.”” Summing across age while
holding the other variables at levels i, k, and / would
thus be noted as fiiu.

One can often discover a good deal about the rela-
tionships in a table by performing quite simple opera-
tions on it. Since several of these operations are directly
related to the log-linear techniques on which we will
focus, a discussion of commonsensical methods will
lead naturally into the explanation of these more formal
methods. The first step that almost anyone would take
after perusing Table 1 would be to form percentages
from it, and the first of several possible percentages to
calculate would be the percentage ‘‘found’’ within each
age (subscripted by j), family (k), and occupational (/)
grouping. Using the cell entry notation developed
above, this percentage would be:

(1) % found = fiu/foju.

For instance, the percentage *‘found’’ among low white
collar childless men aged between fourteen and twenty is
51/(51 + 28) = 65%.

Tables of percentages often reveal more striking rela-
tionships than Table 2 does. Whereas for the childless,
relationships between age and being found are nearly
monotonic and are positive for the two higher occupa-
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Table 2.—Percent found, 1880 and 1890

Age Hi.W. Lo.W. SK. UNSK. UNEMP. TOTAL
No Children
14-20 50 65 66 61 70 66
21-30 59 67 57 47 65 58
31-60 78 92 52 54 50 64
61+ 100 100 — — 0 50
TOTAL 65 68 59 53 68 62
Children
14-20 —_ —_ — —_ — —
21-30 50 73 61 66 50 65
31-60 76 70 71 62 86 69
61+ 53 50 17 53 17 44
TOTAL 73 69 69 62 53 67

tional classes and negative for the three lower classes,
the relationships for men with children are much more
mixed across class and age. Looking at the ‘‘total”” or
“‘marginal’’ rows and columns, it is clear that childless
men in their twenties and unskilled men regardless of
age were especially likely not to be found in the 1890 city
directory, but that the percentage ‘‘found”’ among the
high white collar and skilled and unskilled worker
classes depended crucially on family status in 1880.
Table 2 thus suggests that the three independent
variables interacted with each other to produce a pattern
too complex to be decoded with simple percentages and
linear assumptions.

But of course there are other ways to compute percent-
ages from the raw data, and they may be more reveal-
ing. Tables 3 and 4 are calculated by first summing
across M and then dividing each entry by the row
marginal (total) for Table 3, or the column marginal for
Table 4. In the cell entry notation introduced above, the
equations are

(2) Table 3 entry = St/ Fojns
and

(3) Table 4 entry = f+jk1/f++k1-

Table 3 reveals that 42 percent of males aged fourteen to
twenty in 1880 were unemployed, that among those with
children, the unskilled made up a strikingly smaller
percentage of those above thirty than of those under
thirty years old, that the relationship between age and
the percentage who were in the highest occupational
class was unambiguously monotonic and positive, while
that between age and the percentage in the low white
collar class was negative, but weak. Table 4 demon-
strates that in every class fathers tended to be middle-
aged,.and that in all but one class, the single and child-
less were most likely to be in their twenties. The modal
age category for the childless unemployed was the
teenage one. The percentages in these tables thus give us



Table 3.—Percent of total sample (found plus not
found) summed across rows

Age Hi.W. Lo.W. SK. UNSK. UNEMP. TOTAL
Panel A: No Children
14-20 o* 22 9 26 42 100
21-30 6 30 24 32 7 100
31-60 13 19 30 35 100
61+ 25 25 —_— — 50 100
All Ages 4 25 18 29 23 100
Panel B: Children

14-20 — — — — — —
21-30 4 19 32 44 2 100
31-60 16 18 31 34 1 100
61+ 33 12 12 33 12 100
All Ages 15 18 30 35 2 100
*0 indicates less than 0.5%; — indicates no cases in cell.

some sense of the interrelationships among the indepen-
dent variables.

Another way to try to make sense of complex tables is
to collapse them into bivariate displays, which is what
historians who lack knowledge of multivariate tech-
niques generally do. The panels in Table 5 show the six
bivariate tables which can be drawn from Table 1. A
convenient way to refer to them is to enclose the sym-
bols for the variables in curled brackets. Thus the short-
hand for panel A of Table 5 is {MO}, for panel B,
{MA}, and so on. For anyone who has had the most
elementary statistics course, the immediate reflex action
upon confronting such tables is to compute Chi-
Squares, and we have done so, finding such high values
in each panel that every table contains a significant rela-
tionship at the conventional 0.05 level.

In fact, the reflex in this case is quite desirable, for the
Chi-Square distribution can be employed to accomplish
much more sophisticated purposes than its usual
cookbook use suggests. The Chi-Squares computed in
Table 5 test whether the two variables in a panel are ‘“in-
dependent.”” Consider panel C. If M and S were in-
dependent in a statistical sense, then the value of each
cell would be purely a product of the relevant marginals.
For instance, the top left cell would be equal to
790 x 1113/1724 = 510. The other entries in panel C
would be 602, instead of 625; 280, instead of 302; and
331, instead of 309. As applied here, then, the so-called
““Pearson Chi-Square’’ statistic enables one to compare
the observed data to a criterion, that is, the Chi-Square
distribution, in order to determine whether the model of
independence between the two variables fits the data
well or not. Its formula suggests its nature quite clearly:

Y - E)/F,

(4) Pearson Chi-Square
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Table 4.—Percent of total sample summed across
columns

Age Hi.W. Lo.W. SK. UNSK. UNEMP. TOTAL
Panel A: No Children
14-20 6 39 23 40 84 45
21-30 65 54 62 49 14 45
31-60 26 6 15 10 1 9
61+ 3 o — _ — 1
TOTAL 100 100 100 100 100 100
Panel B: Children
14-20 — — —_ —_ — —
21-30 3 13 13 15 13 12
31-60 85 83 85 80 47 82
61+ 12 4 2 5 40 6
TOTAL 100 100 100 100 100 100

*( indicates less than 0.5%; — indicates no cases in cell.

where indicates a summation over all the values for
two variables, the small f’s refer to the cell entries ac-
tually observed, and the large Fs, to the frequencies ex-
pected under the independence model, in this case, the
values 510, 602, 280, and 310, respectively. But since in-
dependence is not the only possible model, we can
substitute for these particular F’s predictions generated
by any model which we can specify mathematically.
This is one of the keys to log-linear analysis.

A final simple but instructive permutation of Table 1
is shown in Table 6. There we have calculated the pro-
bability of being found divided by that of not being
found for each cell in Table 1. That is, instead of using
Equation (1), we have calculated the entries by using the
following:

(5) Odds of being found = fuu/fukl.

The ““odds,’’ familiar from horse racing, are simply the
ratio of the number found to the number not found.
Now, to make heads or tails of the probabilities in Table
6, we must compare the cells to each other, and one
natural way of doing so is to divide the entry in one cell
by that in another, or, to put it another way, to form an
“odds ratio.” For example, for skilled workers between
thirty-one and sixty, the odds of being found rose from
1.10 to 2.47 if they had children in 1880, producing an
odds ratio of 2.25; whereas, the analogous odds ratio
for high white collar men was (3.24/3.50) = 0.93.

To move beyond these commonsensical operations to
fully multivariate methods, we need to develop ways of
specifying, estimating, and choosing between different
models.’ These models, of which the independence
model that forms the basis of the traditional Chi-Square
test is the most familiar, will yield various estimates of




Table 5.—Six two-way marginal tables based on Table 1

Found
Not Found

TOTAL
x* = 15.66

Found
Not Found

TOTAL
x* = 20.81

Found
Not Found

TOTAL
x: = 4.95

Panel A: Occupation and Persistence

Hi. W. Lo.W. SK. UNSK. UNEMP.

127 (71.3)* 253(68.4) 273(65.3) 328(58.5) 132(67.0)
51 117 145 233 65
178(100.0) 370 418 561 197

Panel B: Age and Persistence

14-20 21-30 31-60 61+
236 (65.7) 280(59.3) 572(68.3) 25(44.6)
123 192 265 31
359(100.0) 472 837 56

Panel C: Family Status and Persistence

No Children Children Total

488 (61.8) 625(66.9) 1113(64.6)
302 309 611

790(100.0) 934 1724

Panel D: Occupation and Age

Age Hi.W. Lo.W. SK. UNSK. UNEMP. TOTAL

14-20 2 (1.1)  79(21.4) 32 (1.7} 94(16.8) 152(77.2) 359
21-30 26(14.6) 130(35.1) 123(29.4) 165(29.5) 28(14.2) 472
31-60  132(74.2) 154(41.6) 257(61.5) 285(50.8) 9 (4.6) 837
61+ = 18(10.1) 7019 604 17 3.0 8 4.1 56

TOTAL 178(100.0) 370 418 561 197

X! = 559.21

No Children
Children

TOTAL
x* = 1105.72

No Children
Children

TOTAL
x* = 263.77

Panel E: Age and Family Status

14-20 21-30 31-60 61+

768 52
359(100.0) 472 837 56

359(100.0) 358(75.8) 69(8.2) 4(7.1)
0 114

Panel F: Occupation and Family Status

Hi.W. Lo.W. SK. UNSK. UNEMP.
34(19.1)  201(54.3) 140(33.5) 233(41.5) 182(92.4)
144 169 278 328 15

178(100.0) 370 418 561 197

*Percentages, summed by column, in parenthesis.
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Table 6.—O0Odds of being found, 1880 and 1890 (X 100)

Age Hi.W. Lo.W. SK. UNSK. UNEMP. .TOTAL
Panel A: No Children
14-20 100 182 191 154 230 192
21-30 144 200 135 89 189 136
31-60 350 1200 110 118 100 176
61 + — — 100
TOTAL 183 209 141 114 214 162
Panel B: Children
14-20 —_ — _ —_ —_ —
21-30 100 267 157 194 100 185
31-60 324 228 247 164 600 220
61+ 113 100 20 113 20 79
TOTAL 269 225 220 165 114 202

the cell entries. We can then compare different sets of
predictions to the observed entries and find one or more
which are both sufficiently close to the reality of the
table and sufficiently parsimonious to suit our tastes.
Because it is the simplest table presented thus far, let us
use panel C of Table 5 to outline the techniques.

The analysis of variance, which is often used to ex-
amine cross-classification tables, suggested to statisti-
cians that an equation containing a ‘‘grand mean
effect,”” separate effects for each variable, and terms for
the possible interactions between variables would be a
good place to start. Since, as we will show, a
multiplicative (but not a linear, additive) equation
allows tests for the statistical independence of two or
more variables, we will use an equation in multiplicative
form to estimate the entries in panel C of Table 5:

(6) Fy = nr' @ 755,

where the 7 (eta) is a form of ‘‘grand mean effect,”” the
7" (tau) is the effect of being found or not found, 77 is
the effect of familial status, and 7%* is the effect of the
interaction between M and S.° But because, as the
subscripts indicate, Equation (6) actually contains nine
effects and we have only four cells on which to base our
estimates, we have to make additional assumptions in
order to be able to estimate anything.” More formally,
without additional constraints, the model is said to be
‘‘underidentified.” Fortunately, the necessary assump-
tions are quite natural. Since we are really interested in
the effect of having children, for example, and not in
determining separate effects for having and not having
children, we assume that:

1
(7)1-'”—TM,T~‘ 1;,1-’"’ T—M;=TMS=T"§S.
These assumptions reduce the number of parameters
to be estimated by five, producing what is called a
‘“‘saturated”’ model; that is, one containing as many
basic parameters to be estimated as there are cells, and

therefore having no ‘‘degrees of freedom.”” Further-

1 1
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more, it is clear from Equation (6) that the effect of
each tau parameter may be measured as a deviation
from a value of 1.00, for if any tau equals 1.00 in the
multiplicative form, it has no impact on the value of the
function. Note that the taus, unlike the Pearsonian cor-
relation coefficient or such familiar coefficients for
cross-classification tables as phi or Yule’s Q, do not
vary only between zero and one or minus one and plus
one. In fact, the taus have no upper bounds.

II1. The Algebra of Log-linear Models

Equation (6) is directly related to various odds ratios
formed from a slightly altered form of panel C of Table
5 (or, more generally, of any table of counts). Table 7
transforms panel C of Table 5 into proportions by
dividing each cell entry by the table total. For instance,
488/1724 = 28.3%.

Since it turns out to be more convenient to do com-
putations in logarithmic form, we will take natural
logarithms of both sides of Equation (6), producing

8) log ps. = logn + log ™ + log ©¥ + log 7/,
where p.. refers to an entry in Table 7.% Each of the
terms on the right-hand side of Equation (8) can now be
expressed in terms of the p.’s:

9) logn = Y% (log pi, + log pi: + log pu
+ log pa),
Y4 (log pi, + log pi;
- log px),
Y4 (log pi,
- log p..),
Vi (log pi
+ log px),
Because of the constraints imposed in (7) above, the
values of the tau parameters for other ‘levels” (i.e.,
categories) of the associated variable can be im-
mediately derived, since, for instance (from Equa-
tion 7),

(10) log ¥ = — log p

(11) log ¥ = - log pi; + log pa,

log pa

(12) log s - log pi, —

S I
a3) 7 = 7
If we take natural logs, we have
(14) log ¥ = —log 7,

and all we have to do get 7 is to change the signs of the
p’s in Equation (11).
Notice also that
(15) log p., + log pi;

-loe LAY

= log ((B2) (B2)).

The quantity to the right of the last equals sign is the
logarithm of the product of two odds ratios, each of
which consists of the proportion of males found divided
by the proportion not found, the first fraction in paren-
theses being for adult males without children, the sec-
ond, with children.? Since both fractions measure part

— log p.: — log paa



Table 7.—Panel C of Table 5 expressed as proportions

No Children  Children !
Found P, =283 P,=363 ' P. =646
Not Found P, = 17.5 P, =119 ., P. =354
]
P, =458 P,=542 | P. =100

of the ‘“‘effect’’ of being found versus not being found
for this particular table, the interpretation of log 7 as
the “‘effect’’ of variable M is quite natural.

Furthermore, the statement that the middle quantity
in parenthesis in Equation (15) equals unity, in which
case its log is zero and the value of {° is also zero, cor-
responds to the definition of the statistical independence
between the two variables. To see this, not that if any
two variables i/ and j are independent,

(16) p; = pi py;.
Substituting these values into the odds ratio in (12), we
have

D1 Das Pi2 Do

Ds2 Dis Day Das’

and since each of the summed terms cancels out
algebraically, the odds ratio should be equal to one
when the two variables are independent.'

It is also easy to show that if we use Equations (9)
through (12) to predict cell proportions, the model
predictions in a saturated model exactly equal the
observed proportions in the original table.!! From
Equations (9) through (12), we know that

(18) log pu Va log (D11 Pi2 D1 Pa)

(A7) pu P22/Dr2a P11 =

1 11 /22
+ Vi log (pp—Lu p“).
Rearranging terms and taking antilogs, we have

(19) puu = (D11 P12 Dus P22 (p;: p;;)(p:; ,Dz;)

221 V4
Grapa)

Canceling terms algebraically on the right-hand side, we
obtain
0) pu = (P!)% = pu.

In the same manner, the reader may satisfy himself that
the predicted or right-hand side proportions pi., pa,
and p,, are precisely equal to the observed or left-hand
side proportions. And when the two sets of proportions
(and therefore the corresponding cell frequencies) are
equal, the Pearson Chi-Square statistic given in Equa-
tion (4) is zero, for then
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@y ¢-m =0

A Chi-Square statistic can therefore be used as a test of
the independence between two variables in a log-linear
model.

Moreover, if we want to test an ‘‘unsaturated”’
model—that is, one containing fewer parameters than
cells, such as Equation (8) with the last term on the
right-hand side deleted—we can simply set the term or
terms equal to zero in the logarithmic form or one in the
multiplicative form and use the remaining log odds
ratios from Equations (9) to (11) to estimate the cell pro-
portions, To determine how well the new model fits the
original observations, we can compute a Chi-Square sta-
tistic with the resulting predicted cell proportions as our
Fs,

When there are more than two categories for a
variable, and/or when there are more than two vari-
ables, the model estimation procedure becomes more
complex. Many estimates which have the statistically
desirable property of being ¢‘maximum likelihood’’ can-
not be computed from ‘‘closed form’’ expressions. That
is to say, while one can always write out such simple ex-
pressions as Equations (9) to (12), in some cases the
resulting estimates will not be the ““best’’ which can be
obtained. In these cases, fortunately, one can use either
of two algorithms, which are called “‘iterative propor-
tional fitting”’ or the ‘‘Newton-Raphson’’ procedure, to
approximate the F’s. Because the principles involved in
generating and interpreting the models remain basically
the same for larger tables as for 2 x 2 tables, and for
numerically approximated as for closed-form estimates,
and because computers can so quickly and accurately
run through the algorithms that a data analyst need not
really understand those parts of the routines in order to
interpret the output, we will not prolong the present
discussion by explicating these matters. '

IV. Hierarchy, Conditional Independence,
and Other Models

Log-linear models of the variety with which we are deal-
ing are constructed according to the ‘‘hierarchy prin-
ciple.”” Consider an equation for a saturated model
similar to Equation (8) but involving three, rather than
two, variables. For the sake of simplicity, we will here-
after refer to the log of tau terms as \’s (lambdas), drop
the subscripts, and temporarily assume that each of the
variables is divided into only two classes. Instead of
four basic terms, the equation for the three-variable
model has eight:

(22) log pu: = logn + N + N + X% + AMS 4 \M©
+ NSO 4 £\MOS,

The hierarchy principle dictates that one cannot con-
sider a model involving only ‘‘higher-order’’ terms
without including the corresponding lower-order terms.
For example, the following models are forbidden:



(23) log pa: = A (leaves out seven lower-order
terms);
(24) log pue = logn + N + N + X0 + A\ 4 MO
+ \MOS (leaves out A%9); .
25) log pis = logn + MM + N5 + N%©

(leaves out A9),
It is, however, perfectly proper to propose
(26) 10g pikl = IOg n + XM + )\S + XMS,

because all the variables involved in the second-order
term AMS are represented in first-order terms in the equa-
tion.

In social scientific applications, the hierarchy princi-
ple usually seems quite natural. While it is possible to
think of situations in which the idea that one variable is
a social catalyst is more than a metaphor, in most in-
stances for which we have enough data to require
multivariate methods, the principle of hierarchy will not
preclude the testing of any model of interest.

In any case, the hierarchy principle enables us to
simplify notation. Hereafter, instead of using equa-
tions, we will refer to models using the curled bracket or
““fitted marginals’’ mode of expression already in-
troduced, but we will adopt the shorthand method of
explicitly noting only the highest-order terms we want to
put in the model, since by the hierarchy principle, all
lower-order terms involving those variables must be in-
cluded." For example, {MS} will mean the same thing
as Equation (26), and {MOS} will be equivalent to
Equation (22).

Log-linear models can be constructed so as to give
mathematical form to notions other than independence.
In ‘‘square’’ tables (that is, tables containing two
variables which have the same number of categories)
one can test for ‘‘symmetry,”’ ‘‘quasi-symmetry,’”” and a
variety of other interesting concepts, several of which
have been applied by sociologists to the study of oc-
cupational mobility. ' If there are *‘structural zeroes’’ in
a table of any size or shape (for example, if one were
trying to determine the importance of legal immigration
compared to that of the fertility of the American-born
in the growth of various ethnic groups in America, there
would be periods when the immigration of natives of
some Asian countries or Africa was prohibited by law)
one can estimate models of ‘‘quasi-independence’’
which exclude the bothersome cells. '

An even more basic idea, useful in analyzing any table
with more than two variables, is that of ‘‘conditional in-
dependence.”’ Put most simply, conditional in-
dependence means that if we control for one or more
variables, the apparent relationship between two or
more other variables disappears, as illustrated for a
hypothetical three-variable case in Table 8. If M and S
were in fact independent when we took A into account,
then we could drop the terms involving the interaction
of M and S from the model and still get a good fit be-
tween the estimated and observed frequencies.'* The
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Table 8.—A hypothetical example of conditional
independence

Panel A: Apparent Bivariate Relationship

Variable A
Variable B Level 1 Level 2
Level 1 35% 10%
Level 2 15% 40%

Panel B: Variables A and B Conditionally Independent, Given
Variable C

Variable C, Level 1 Variable C, Level 2

Variable A Variable A
Variable B Level 1  Level 2 Level 1  Level 2
Level 1 35% 35% 20% 20%
Level 2 15% 15% 30% 30%

more general point here is that historians, who nearly
always have a rich sense of the interactions between, for
example, different social groups in specific historical
contexts, may be able to formalize and test a variety of
original models using log-linear methods. The flexibility
of the technique and the multiplication in the number of
possible models as the number of variables grows (for
example, there are 113 different ones in any analysis of
the relationships between four variables) frees historians
to exercise their imagination, rather than being con-
strained, as they often are with such techniques as mul-
tiple regression or factor analysis, to confine themselves
to testing concepts laid down by statisticians who had
other purposes in mind. '

In addition to the flexibility they offer, log-linear
techniques have more desirable statistical properties
than such linear techniques as regression with dummy
variables or multiple classification analysis (MCA), and
even more than weighted least-squares. As introductory
econometrics texts now conventionally warn us, a re-
gression on either continuous or discrete variables of
dependent variables which take on only two (or a small
number of) values violates the assumption of ‘‘homo-
scedasticity,’’ or equal variances of the errors. Although
the resultant estimates are unbiased, the estimated er-
rors do not have the least possible variance, and the
usual significance tests should not be used. Since the
log-linear model has no such problems, and its
associated significance tests are accurate, it is to be
preferred over MCA., "

The standard solution to homoscedasticity, weighted
least squares—known as GSK or Grizzle-Starmer-Koch
techniques in the case of discrete variables—eludes this
difficulty, but not another serious one. Unlike log-linear




estimates, weighted least squares estimates of probabil-
ities are not constrained to lie between zero and one.
Thus it is possible to obtain estimates of, say, the pro-
bability of being found for men who have certain traits
which are greater than one or less than zero. When all
the grouped observations are clustered between about
20 percent and 80 percent on the dependent variable,
GSK and log-linear techniques yield quite similar
results. But since the log-linear estimates are always at
least as good as those from weighted regression, and in
the cases of many extreme values, the log-linear predic-
tions are better, we see no reason to employ weighted
least squares at all.'®

One final concept should be clarified before we
analyze the Boston mobility data: the difference be-
tween the particular genre of log-linear methods which
we deal with in this paper and “‘logit’’ analysis. To put it
simply, logit analysis (which can also be applied where
the variables are measured on interval scales) designates
one variable as dependent, while what we have been re-
ferring to as log-linear analysis treats all variables as
jointly dependent.'® In logit, instead of estimating log
(pai) we estimate log (Pi/pax) which is the ratio be-
tween, say, the proportion found and the proportion
not found. The relationship between the two models is
obviously very close; the logit coefficients are twice
those of the relevant lambdas, and the results using the
two methods are generally quite similar.?

Choosing one over the other is chiefly a matter of
habit, taste, or philosophy, and, in fact, we should note
that the data analysis for this paper has changed the
authors’ preferences somewhat. Before beginning it we
had unquestioningly accepted the conventional absolute
distinction between ‘‘independent” and ‘‘dependent’’
variables. Embodying this black-and-white scheme,
logit constrains the analyst to consider only those
models in which the ‘‘dependent’’ variable is related to
every included ‘‘independent’’ variable. For example, if
M is considered the ‘‘response’’ variable, then log-linear
models such as {ASO}, or Models 31 and 34-37 in
Table 10, below, would make no sense and would never
have been estimated.?

Yet, as the analysis in section 5§ will show, Models
34-37 are interesting ones which fit this particular data
set somewhat better than the logit models do. Further-
more, on reflection, we see no reason to divide the
world into two disjoint sets, two black boxes labeled
“independent’’ and ‘‘dependent’’ whose separate con-
tents are never scrutinized. Because we are more con-
cerned with predicting geographic mobility than with
the relationships between A, S, and O, we will refer to
M somewhat loosely as the ‘‘dependent’ variable.
There is simply no available terminology to indicate that
we wish to emphasize one set of relationships, while not
wholly ignoring other sets. But since we do not wish to
ignore possible linkages between A4, S, and O, we will
employ log-linear, rather than logit analysis.
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V. Choosing among Log-linear Hypotheses

After all the preparation, we are ready to return to our
substantive example. Using Fay and Goodman’s ECTA
(Everyman’s Contingency Table Analysis) program, we
examined the relationships between the variables in
Table 1. Available directly from Goodman, ECTA is
simple and inexpensive to use.? Basically, the analyst
provides a table—of raw counts, not proportions—and
format information about it, uses the fitted marginals
notation to specify models to be estimated, indicates the
desired level of closeness of fit for models which have to
be approximated, and chooses which statistics and
tables are to be printed. All these commands may be
stated in as few as four lines, not including the table.?
Other, similar programs are available from other
sources.

Interpretation of ECTA’s output should begin with
the standardized lambdas estimated from the saturated
model, some of which are displayed for the Boston data
in Table 9. Standardized lambdas are simply the lamb-
das of Equation (22), defined for the four-variable case
and divided by their estimated standard deviations; they
are available as an option of ECTA.?* Since for large
samples the standardized lambdas are distributed ap-
proximately as standard normal variables, any absolute
(that is, either positive or negative) value over about
1.64 is statistically significantly different from zero at
the 0.05 level. Absolute values below 1.64 indicate
weaker relationships.

The standardized lambdas are useful in deciding
which of the many models to test and in determining
whether certain categories of particular variables may
be consolidated. Of the 119 lambda effects and the one
eta effect calculated, we present only the eta and the 31
lambdas which had standardized values of 1.64 or
above.? The most striking fact about the table (which
was of course implied by the very large Chi-Squares for
panels D through E of Table 5) is the strong interactions
among the independent variables A, S, O. Few men
under thirty were fathers yet; few men over thirty
weren’t (see rows 11-14 of Table 9). Men in high white
collar jobs tended to be middle-aged, while the un-
employed tended to be teenagers (see rows 17-29).
The single-variable effects (rows 2-9) simply reflect the
unequal number people in each age and occupational
bracket and the fact that more people were ‘‘found”
than were not. The dearth of significant three- and four-
variable lambdas (3 out of 80) is also important, for it
indicates that a fairly simple model containing few
terms of very high orders will probably suffice.

Finally, and regrettably, it must be noted that only
one of the fifty-nine interaction terms involving M, that
measuring the relation between age and being found,
was significant. In other words, when all the interac-
tions between variables are taken into account, none of
the independent variables, or any combination of them,
predicted very well whether an 1880 Boston resident



Table 9.—Standardized lambdas for saturated model

for data in Table 1.

Effect of Standardized

Row # Variable(s) Level of Variable Lambda
1. 7 — 1.780"

2. M — 1.874°
3. A 1(14-20)° ~3.435
4, 2(21-30) 8.257
5. 3(31-60) 8.391
6. 4(61 +) —6.656
7. (o) 1(Hi.W.) —2.657
8. 4(UNSK.) 3.793
9. 5(UNEMP.) —~3.445
10. MAa 3(A4)* 2.308
11. AS 1(4)* 9.168
12. 2 5.351
13. 3 —-10.801
14. 4 —6.134
15. e 1(0)* —-2.395
16. 5 2.974
17. AO 1(4) 1(0)° —2.080
18. 1 5 3.429
19, 2 1 —-2.253
20. 2 3 2.334
21. 2 4 1.887
22. 2 5 -2.134
23. 3 1 2.201
24. 3 3 3.028
25. 3 4 1.852
26. 3 5 —4.681
27. 4 1 2.650
28. 4 3 —-1.795
29, 4 5 1.724
30. ASO 1(4) 1(0)° -2.195
31. 2 1 2.055
32, 3 2 -1.828

. There is no standard deviation for 5. This is the unstand-

ardized effect.

2. Only standardized lambdas above 1.64 in absolute value
are listed in the table.

3. Definitions of age and occupation categories in paren-
thesis.

4. For 2 variable interactions, the levels listed are for the
variable in parenthesis. The other variable in the MA, AS,
and SO interactions is at level one (found in the case of M,
and no children in the case of §).

5. In the A0 and ASO interactions the levels are of the

variables in parenthesis on their right.

would be found in the area in 1890.% It should also be
noted that, although Goodman has developed a
measure for log-linear analysis which somewhat
resembles R? for regression, there is no index for logit or
log-linear analysis which has nearly so appealing an in-
tuitive interpretation as R? does for regression or as any
of the Goodman-Kruskal ‘‘proportionate error reduc-
tion’’ statistics do for simple cross-classification
tables.”

The principal method for assessing models involving
different sets of independent variables is to compute
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Chi-Square values comparing the actual cell entries,
such as those in Table 1, to entries estimated by using a
given model.? For this purpose, the ‘‘Likelihood Ratio
Chi-Square statistic,”’ given by

(7) X = 2)_ f log (fi/F)

is more useful than the ‘‘Pearson Chi-Square’’ statistic
defined in Equation (4) above, because xi always gives
at least as low an estimate as x? does, and because x?,
but not x2, can be ‘“‘partitioned,”” in a sense which will
be made clear below.?® We will therefore use x?
hereafter.

Table 10 presents a series of xf values for a large
subset (36 of 113) of the possible log-linear models ap-
plied to Table 1. The models, all hierarchical, are iden-
tified in the fitted marginals notation. (Substantive
discussion of each model will be put off until Section
VI.) Whereas an analyst using a Chi-Square test in the
traditional manner wishes to find a high value of x?,
since that indicates that the ‘‘null model’’ of no rela-
tionship may be rejected, here we wish to find low
values of x?, because such values indicate that the
postulated model yields estimates close to those in the
table of actual cell values.

Note first that Model 1, which contains only the
grand mean or eta term and which therefore expresses
the notion that all cells have an equal proportion of the
total number of individuals, fits extremely poorly. By
contrast, Model 18, the saturated model, fits perfectly.
This will always be the case. Why not, then, stop with
this complete and, in a sense, perfect model, accept the
view that everything affects everything else, and be done
with it? The reason is that in testing log-linear models,
we must simultaneously strive for parsimony and com-
pleteness. Indeed, for historians, who have a profes-
sional predilection for total or ‘‘kitchen sink’’ explana-
tions (better to include every influence, however small,
on some outcome than later to be confronted with the
criticism that one neglected some factor), this emphasis
on parsimony of explanation is one of the chief heuristic
virtues of using multivariate statistical methods. Beyond
heuristics, log-linear analysis and other multivariate
procedures provide statistical criteria to assist us in
deciding just where to compromise between parsimony
and completeness. ’

None of the models numbered from 1 to 17, which
represent some of the possible poorly fitting lower-order
hypotheses, comes close to any reasonable significance
level. Included chiefly for illustrative purposes, they
may be largely disregarded. But beginning with Model
18, all the subsequent models fit the data adequately at
the 0.05 level of significance. How can one choose be-
tween them? There are three ways. First, one or more
models might encapsulate more coherent theories, or
ones more consistent with basic assumptions or with
previous studies than other models do. Yet since several,
perhaps all, such models in any particular instance



Table 10.—Chi-square values for models based on
Table 1.

Degrees of
Model # Margins Fit Freedom
Panel A: Palpably Unsuitable Models
1. Equiprobability 3134 79
2. {M} 2989 78
3. {M}{A} 2180 75
4, {M}AYHS} 2168 74
5. {M}{A}{S}{O} 1872 70
6. {MA}{MS} 2142 70
7. {MA}{MS}{MO} 1832 62
8. {MSO}{A} 1566 57
9. {MAO} 1340 40
10.  {MAO}{S} 1329 39
11. {MSO}{AO} 1070 45
12. {MAO}{SO} 1049 35
13. {MAS} 857 64
14. {MAS}{0O} 561 60
15. {MAS}{MO} 546 56
16. {MSO}{AS} 279 54
17. {MAS}{MSO} 260 48

Panel B: Statistically Significant, But Easily Rejected Models

18. {MASO} 0.0 0
19. {MAS}{MAO}{ASO}{MSO} 6.53 12
20. {MAS}{MAO}{ASO} 10.26 16
21. {MAS}{MAO}{MSO} 16.12 24
22. {MAS}{AO} 64.54 48
23. {MAS}{AO}{SO} 47.59 44
24. {MSO}{AS}{A0} 45.67 42
25. {MAO}{AS} 41.44 36
26. {MAS}{ASO} 38.12 32
Panel C: Final Contenders
27. {MAS}{MAO} 38.08 32
28. {MAS}{MSO}{AO} 29.08 36
29. {MAO}{AS}{SO} 24.49 32
30.  {MAS}{ASO}{MO} 21.69 28
31. {ASO}{MA}{MO} 2592 . 32
32. {ASO}{MA}{MO}{MS} 23.21 31
33. {AS}{AO}{SO} {MA}{MO}{MS} 32.70 43
34. {AS}{A0}{SO}{MA}{MO} 35.39 44
35. {AS}{AO}{SO}{MA} 50.95 48
36. {AS}{AO}{SO}{MO} 57.34 47
37. {AS}{AO}{MA}{MO} 52.34 48

might plausibly be related to some theory or theories,
this criterion may not be much use. Second, one may
adopt the convention that one will prefer one model to
another if it has either a lower Chi-Square and the same
number of degrees of freedom (e.g., Model 29 would be
preferred to Models 26 and 27) or a lower Chi-Square
and more degrees of freedom (e.g., Model 28 would win
out over Models 26 and 27).

The third and, we think, the best method, decompos-
ing Chi-Square, allows us to choose between certain
other models as well. In particular, it enables com-
parisons of ‘‘nested’’ models; that is, those which con-
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tain the same lower-level terms but differ by one or
more terms at the same or higher levels. This procedure
also allows an assessment of the importance of the
linkages between specific variables. An example will
clarify the notion. Model 23 contains the same terms as
Model 22 and {SO}, the relation between family and oc-
cupational status, as well. Model 22 is therefore said to
be “‘nested’’ within Model 23 or to be a subset of Model
23, and the important of the term {SO} may be gauged
by taking the difference in the Chi-Squares for the two
models and determining whether that difference, which
is also distributed as Chi-Square, is significant.* The
appropriate number of degrees of freedom for the test is
the difference in the degrees of freedom for the two
models. In this case, the difference in Chi-Square is
16.95 (64.54 — 47.59 = 16.95) and the difference in
degrees of freedom is 4 (48 — 44 = 4). A table of the
Chi-Square distribution will show that this is highly
significant at the 0.05 level. Model 23 is therefore to be
preferred over Model 22, and by this test, at least, the
linkage between family status and occupation is judged
important.

Table 11 gives the results of a series of similar tests
and demonstrates how one chooses between models
which are generally acceptable. Test number 1, for ex-
ample, compares Models 19 and 18 from Table 10. The
fact that the difference between the Chi-Square for the
two models is not significant with 12 degrees of freedom
means that the models yield about equally good predic-
tions of the internal cell entries. We therefore choose
Model 19 over Model 18 for reasons of parsimony and
conclude that the four-variable interaction term is not a
necessary part of a satisfactory explanation. Similarly,
in the tests numbered 2-9 we reject as unnecessarily
complex Models 19, 20, 21, 26, and 27. For tests 10-18
we cannot reject the model containing more terms, since
the differences between the Chi-Squares are all signifi-
cant at the 0.05 level for the appropriate degrees of
freedom, but these tests allow us to reject Models 20 and
22 through 26. (Duplication of tests for some models is
not strictly necessary, but such tests guard against
arithmetic and transcription errors and increase our
confidence in the stability of the results.) Panel A of
Table 11 thus leaves three models, none of which is
nested in either of the others or has the same number of
degrees of freedom as the others, still unrejected.?!

In panel B of Table 11, we first compare the models
which survived the panel A comparisons with the
models nested in them numbered 31, 33, and 34. Since
each of the pairs of models in tests 19-22 is statistically
indistinguishable at the 0.05 level, we reject the models
containing more higher-order terms and fewer degrees
of freedom. Second, we compare Models 31 and 32 with
their nest mates 34 and 33 and reject 31 and 32.%? Third,
we compare 33 and 34, again find them statistically
similar, and therefore choose the model containing
fewer terms, that is, 34. Finally, we present three ways
of simplifying Model 34, find that all of them fit the



Table 11.—Assessing the effect of terms in models from Tablg 10.

Difference in

Degrees
Model #’s Terms of Preferred
Test # (From Table 10) Assessed x? Freedom  Model
Panel A: Narrowing Down Acceptable Models
1. 18,19 {MASO} 6.53 12 19
2. 19,20 {MSO} 3.73 4 20
3. 20,30 {MAO} 11.43 12 30
4. 20,29 {MAS}{ASO} 18.82 20 29
5. 21,28 {MAO} 12.96 12 28
6. 21,27 {MSO} 21.96 8 27
7. 26,23 {ASO} 9.47 12 23
8. 20,29 {MAS}{ASO} 14.23 16 29
9. 27,25 {MAS} 3.36 4 25
10. 20,26 {MAO}{MO} 27.86* 16 20
11. 29,25 {SO} 16.96* 4 29
12. 28,24 {MAS} 16.59* 6 28
13. 23,22 {SO} 16.95* 4 23
14. 28,23 {MSO} 18.51* 8 28
15. 30,26 {MO} 16.43* 4 30
16. 30,22 {ASO}{MO} 42.85* 20 30
17. 28,17 {AO} 231.0* 12 28
18. 29,12 {AS} 1025.0* 3 29
Panel B: Choosing The Best Model
19. 28,33 {MAS}{MSO} 3.62 7 33
20. 30,33 {MAS}{ASO} 11.01 15 33
21. 30,31 {MAS} 4.23 4 31
22. 29,34 {MAO} 10.90 12 34
23, 31,34 {ASO} 9.47 12 34
24, 32,33 {ASO} 9.49 12 33
25. 33,34 {MS} 2.69 1 34
26. 34,35 {MO} 15.56* 4 34
27. 34,36 {MA} 21.95* 3 34
28. 34,37 {SO} 16.95* 4 34

Note: *indicates a significant difference in the Chi-Squares at the 0.05 level.

data significantly worse than 34, and conclude that 34 is
the best we can do.*

Table 11 also facilitates the assessment of particular
interactions, but a set of tests may lead to ambiguous
results. For instance {MAS} is evaluated by Test 9 and
found unnecessary, but by Test 12 the same term comes
out to be significant. Likewise, {MSO} is rated unim-
portant in Tests 2 and 6 but important in Test 14. Tests
for some of the interactions, fortunately, are less
equivocal. {SO}, {MO}, {MA}, and particularly {A4S}
and {AO} are undoubtedly crucial parts of each model.

Another way of ascertaining the importance of
various terms and of determining the extent of
superiority of one model over another is to divide the
differences in Chi-Square between nested models, such
as those given in Table 11, by the Chi-Square in the
simpler of the two models. Thus the second line in Table
12 shows that when we move from Model 25 to Model
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29, which amounts to adding to Model 21 the term
{SO}, we reduce the Chi-Square by 40.9 percent
(16.96/41.44 = 0.409). Although such percentages may
be considered counterparts of the coefficients of
“‘multiple determination’’ and ‘‘partial correlation”’ in
multiple correlation and regression analysis, they are
not really directly analogous, for they cannot be inter-
preted as measuring reductions in the percentage of
variance explained. These percentages do measure the
increase in one’s ability to reproduce the original cell en-
tries, but those entries can always be predicted exactly
by (saturated) models which may or may not capture
causal relationships between the independent and
dependent variables at all. We therefore prefer to refer
to these measures simply as percentage reductions in
Chi-Square.

Table 12 demonstrates that the {40} and {AS} in-
teractions are particularly important, by this measure,




Table 12.—Percentage reduction in x? due to particular
terms

Test # Model #’s
(From (From Terms % Reduction

Table 11) Table 10) Assessed In x?
10. 20,26 {MAO}{MO} 73.1
11. 29,25 {SO} 40.9
i2. 28,24 {MAS} 36.3
13. 23,22 {SO} 26.3
14. 28,23 {MSO} 38.9
15. 30,26 {MO} 43.1
16. 30,22 {ASO}{MO} 66.4
17. 28,17 {AO} 88.8
5. 21,28 {MAO} 44.6

7. 26,23 {ASO} 19.9

9. 27,25 {MAS} 8.1
18. 29,12 {AS} 97.7
21. 30,31 {MAS} 16.3
22. 29,34 {MAO} 30.7
25. 33,34 {MS} 7.6
26. 34,35 {MO} 30.5
27. 34,36 {MA} 38.3
28. 34,37 {S0} 324

while those of {SO}, {MO}, {MA}, and each of the
three-variable interactions are of less consequence, and
that including terms such as {4SO} or {MS} reduces
the Chi-Square hardly at all. Depending on which
models are compared to each other, the assessments of
the importance of particular terms may differ, but these
differences are usually small. For instance, including
{SO} reduces the Chi-Square by 40.9 percent by Test
11, but by only 26.3 percent by Test 13. As this example
shows, it is pnssible to rank the interactions somewhat
differently in terms of the percentage reduction in Chi-
Square, depending on which model comparison is used.
According to Test 11, {SO} reduces the Chi-Square by
more than {MAS} does by Test 12, but by Test 13,
{SO} reduces Chi-Square less than {MAS} does by Test
12. By Test 9, {MAS} reduces Chi-Square less than
{SO} does in either Tests 11 or 12. This observation
provides another reason not to rely heavily on the
percentage reduction in Chi-Square in evaluating
models.

V1. Substantive Conclusions

If the proof of the methodological pudding is in the
substantive pie, where do all these numbers get us? In
The Other Bostonians, Thernstrom found that men in
the higher occupational groups were more likely to per-
sist from 1880 to 1890 in Boston than were men on the
lower rungs of the ladder. (He did control for age, to
some extent, by presenting statistics in the relevant table
only for men between nineteen and forty years old in
1880.)* He then speculated that nineteenth-century
America contained ‘‘. . . a permament floating pro-
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letariat made up of men ever on the move spatially but
rarely winning economic gains as a result of spatial
mobility’’ and suggested that this transiency made it dif-
ficult to mobilize the urban masses socially and
politically and facilitated social control by the prosper-
ous.* These were among the most striking insights in
Thernstrom’s stimulating and influential book.

The multivariate analysis which we have presented
suggests a more complex picture with somewhat dif-
ferent implications than Thernstrom drew.* Rather
than a floating proletariat, our analysis suggests that the
outstanding features of the landscape were youthful
mobility, comparatively settled middle age, and the ac-
cumulation of human and physical capital over the life
cycle. Rather than an irrationally or at least unsuc-
cessfully gyrating whirlpool of movement, our models
are consistent with—though they do not, of course,
prove that there were—patterned searches for oppor-
tunity by rational individuals.

Suppose job chances in each occupation differed
somewhat from place to place and that one was trying to
decide whether to move or stay put. Consider two men
who could, by moving to a particular city, each raise
their salaries by the same amount, whose costs of mov-
ing were fairly substantial and roughly equal, but who
were different ages. Then the younger of the two would
be more likely to move, for he could expect to realize the
higher salary for a longer time (such things as age-
specific health being assumed equal between the two
men). With luck, the younger man would much more
than make up for the costs of relocating, while a much
older man might barely cover those costs before disa-
bility or death overtook him.

To make the example a bit more realistic, suppose
that we do not assume that each man has perfect infor-
mation aboui iiie present discounted value of the wages
in the two places. Then if they were each about equally
certain of the geographical wage differential, the
younger man would still be more likely to move than the
older. For if they guessed either too low or correctly on
the wage differential, and both moved, the younger man
would enjoy the higher wage in the new area for a longer
time; if they overestimated the wage differential, and
both moved, the younger man, by moving again, could
rectify his mistake, while the older man, pushing into
the age when health and other concerns make starting
out once more increasingly difficult, would be more
likely to be stuck with his bad decision. In short, the
young can better afford to take risks because they have
more to gain.

They also, on average, have less to lose, both in
economic and in social terms. Less likely to own homes
and other fixed property, they have fewer transactions
costs to bear if they vacate. Likely to have invested less
heavily in building up good will with employers, em-
ployees, or customers, they can move on without dis-
carding so much of this ‘‘capital.”’ Since they have had
fewer years to make friendships and, especially if they



are single, have a lower probability of belonging to a
family unit which has large numbers of friends and
relatives in an area, there are also fewer social ties to
keep young men in a particular place. Although they
were in general less able to make independent economic
decisions than men in the nineteenth century, the same
considerations would, naturally, apply to women.

A person’s stage in the life cycle, furthermore, can be
expected to affect his social, as well as his geographical,
mobility. Young people almost invariably make some
investment in human and/or physical capital. Later in
life, they may enjoy the returns from their earlier in-
vestments in the form of immediate measurable social
mobility by buying shops or by moving from unskilled
to skilled or low white collar to high white collar jobs, as
well as in the form of consumption by purchasing
homes or of intergenerational social mobility by increas-
ing their children’s life chances. In cross-sectional data,
therefore, we should expect to find disproportionate
numbers of youths in lower occupational strata and
disproportionate numbers of the middle-aged in higher
strata.”’

These theoretical considerations suggested an analysis
of geographic mobility that ought to include age and
family status among the independent variables.* Our
multivariate analyses generally diminish—but do not
entirely eliminate—occupational class differentials in
persistence, and they underline the importance of age.
The preferred model, that numbered 34 in Table 10, in-
cludes direct links between age and persistence as well as
between occupation and persistence; Tables 11 and 12
‘especially highlight the interactions between age and oc-
cupation and between age and marital status. No model
of persistence in Boston which is at all satisfactory, as
least among those containing the independent variables
we examined, can disregard age as a direct influence,
nor can it neglect the interrelationships between age and
other independent variables. For example, Model 7 in
Table 10, which contains only {MA}, {MS}, {MO},
and lower-order terms, shows a Chi-Square of 1832, an
extremely poor fit. And Model 8, which includes all the
interactions between mobility, status, and occupation
but excludes the direct and indirect effects of age on
mobility, also does very badly.

The lambda or effects coefficients for Model 34 from
Table 10, displayed in Table 13, further demonstrate
these points. Unlike regression coefficients, which
measure the impact on a dependent variable of a given
change in an independent variable, the lambdas have no
simple intuitive interpretation. The essential reason for
this is that the relationships in log-linear (or logit or
probit) analysis are assumed to be nonlinear and condi-
tional, as opposed to the linear and unconditional ef-
fects of the linear regression model. For instance,
change due to age in the probability of being found in
1890 varies for each age category, and, within age
groups, for each occupational class and family condi-
tion. Thus the effect on mobility of being in one’s twen-
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Table 13.—Lambda or effects coefficients for Model 34
of Table 10.

Standard
Variable Level Lambda Error

Panel A: Single-Variable or Unequal Marginal Effects

Eta ! 1.765 !
M Found 0.225* 0.126
(14-20) —~0.840* 0.338
(21-30) 0.909* 0.140
(31-60) 0.981* 0.143
61+) —1.050* 0.189
S No Kids 0.192 0.126
o (Hi.W.) —0.687* 0.410
(Lo.W.) 0.307) 0.187
(Sk.) 0.190 0.211
(Unsk.) 0.779* 0.165
(Unemp.) —0.588* 0.205

Panel’B: Interactions of Independent Variables With
‘ Dependent Variable

MA (14-20) 0.110 0.338
(21-30) 0.004 0.140
(31-60) 0.197** 0.143
©61+) -0.311** 0.189
MO Hi.W. 0.106 0.410
Lo.W. ’ 0.056 0.187
Sk. —0.036 0.211
Unsk. -0.164 0.165
Unemp. 0.038 0.205
Panel C: Interactions Among Independent Variables
AS No Kids, 14-20 1.894* 0.338
No Kids, 21-30 0.465* 0.140
No Kids, 31-60 —1.244* 0.143
No Kids, 61 + -1.115* 0.189
SO No Kids, Hi.W. -0.141 0.410
No Kids, Lo.W. 0.037 0.187
No Kids, Sk. -0.187 0.211
No Kids, Unsk. -0.197 0.165
No Kids, Unemp. 0.488* 0.205
AO 14-20, Hi.W. — 1.606** 1.192
21-30, Hi.W. -0.224 0.433
31-60, Hi.W. 0.731* 0.427
61+, Hi.W. 1.098* 0.477
14-20, Lo.W. 0.255 0.459
21-30, Lo.W. 0.251 0.207
31-60, Lo. W, 0.055 0.214
61+, Lo.W. —0.561** 0.350
14-20, Sk. —0.248 0.505
21-30, Sk. 0.453* 0.226
31-60, Sk. 0.535* 0.232
61+, Sk. - -0.739* 0.415
14-20, Unsk. 0.240 0.403
21-30, Unsk. 0.174 0.182
31-60, Unsk. 0.080 0.189
61+, Unsk. —0.494** 0.309
14-20, Unemp. 1.358* 0.488
21-30, Unemp. —0.654* 0.280
31-60, Unemp. —1.401* -4.614
61+, Unemp. 0.696* 0.313

Notes: 1. The constant or grand mean effect has neither categories
nor a standard error associated with it.
*Designates lambdas which are statistically significant at the
0.05 level.
*sDesignates lambdas which are statistically significant at the
0.10 level.




ties in 1880 differs for the unskilled and high white col-
lar workers, and within the unskilled category, for those
with and without children, and each such effect differs
for each age group. The lambdas in essence ‘‘average
out”’ all the conditional effects for each category of
each variable. Rather than transform them and increase
both the number of coefficients and perhaps, the
reader’s confusion, we concentrate on the lambdas
alone, considering them simiply as measures, without
any precise natural meaning, of the relevant effects.

The single-variable or ‘“main’’ effects in panel A of
Table 13 show only that there were, for instance, fewer
people in the fourteen to twenty age group than in other
age categories, fewer high than low white collar men in
1880, and so on. Included for reasons of completeness
only, they may be largely disregarded.

While none of the lambdas in panel B is significant at
the 0.05 level, two of the effects for age—but none of
those for occupation—are significant at the'0.10 level.
Mea in their twenties were about as likely to move as to
stay in Boston during the 1880s, if their other traits are
statistically controlled, while those between thirty and
sixty were much more likely to stay than to move, even
taking into account their different class and familial
situations. The old apparently died.* 1880 professionals
were somewhat more likely to be found in the Hub City

than low white collar workers were ten years later, and

men in blue collar occupations in 1880 were even less
likely than clerks were to appear in the 1890 city direc-
tory. The effects of occupation on mobility, however,
are in each case smaller than their associated standard
errors, and none even comes close to statistical
significance. Coltrolling for age and family status,
therefore, almost entirely ‘‘washes out’’ the relationship
which Thernstrom stressed between occupation and per-
sistence. Furthermore, if dzath rates were higher for
lower-class than for upper-class men among the older
group, and if directory enumerators were more prone to
skip lower-class than upper-class men (because poor
neighborhoods were more dangerous, because business-
men often advertised in directories, or simply because it
was probably harder to locate every individual in a
densely populated tenement than along a tree-lined
street of single-family houses, then the “‘true”’ effects of
occupational class on persistence might vanish entirely.

Panel C displays the relationships among the age,
family, and occupation variables. The coefficients for
{AS} and {SO} show, not surprisingly, that few of the
young or the unemployed had children yet, while those
over thirty were generally fathers. It is the twenty {40}
coefficients, one for each combination of age and oc-
cupation, which draw the most interest. Nearly half of
them are statistically significant at the 0.05 level. High
white collar men were very likely to be middle-aged or
older, while low white collar men tended to be below the
age thirty. Skilled workers were overwhelmingly middle-
aged, rather than either below twenty or over sixty,
while the numbers in the unskilled group varied mono-
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tonically and inversely with age. The unemployed were
usually either teenaged or elderly. All these cross-
sectional relationships suggest that many Bostonians
who began in lower strata could expect to move up an
occupational notch as their human and physical capital
matured, and they reinforce Thernstrom’s more general
picture of the late-nineteenth-century American labor
market as one of limited but real opportunities.*

For although he found no impermeable division be-
tween classes, Thernstrom did, in effect, describe late-
nineteenth-century society as separated into two basic
sorts of men. On the one side were striving workers,
clerks, and professionals who with a little luck and
perserverance could reasonably expect to climb at least a
small way up the social ladder or to increase their initial
wealth somewhat. On the other side were the evanescent
wandering workers, disappearing from the sample,
assumed never to find a settled place in society, unions,
or politics—a conjectured reserve labor army on the
move. By taking age into account in a multivariate
analysis of spatial and, to a very limited extent, of social
mobility, we have largely eliminated the necessity for
postulating the existence of that second class, at least to
the extent that it emerged out of the Boston data. Of
course there were many mobile Americans; some un-
doubtedly never found a comfortable niche, and dispro-
portionate numbers of them were probably relatively
unskilled and poor. But if the class differences in
geographic mobility were principally a product of age
differences, if age also correlated strongly with a man’s
place in the occupational strata in 1880 (both of which
we have tried to show) and if many workers, both blue
and white collar, progressed upward during their work-
ing lives, which Thernstrom showed, then Thernstrom’s
second class merges with his first, both apparently
engaged in rational searches for job opportunities and a
good many enjoying some success at it.

Many of these conclusions would have been missed—
in fact, were missed—by historians who ignored the in-
terrelationships between independent variables and who
were content to use the available data merely to describe
bivariate relationships instead of combining appropriate
theory with multivariate techniques, such as log-linear
ones, to build and test more comprehensive explana-
tions. Having rendered the technique more accessible to
historians, we invite them to use it to divise more
sophisticated approaches to this and other similar prob-
lems in social history.*!

An earlier version of this paper was presented at the Social
Science History Association convention in 1981. We wish to
thank this journal’s anonymous reader and Stanley Engerman,
Douglas Hibbs, Philip Hoffman, Colin Loftin, Douglas
Rivers, Stephan Thernstrom, Quang Vuong, Sally Ward, and
especially Robert McCaa for comments on various iterations
of the piece. Kousser’s research was partially supported by
grant RO-20225-82 from the National Endowment for the
Humanities. We take responsibility for all remaining errors.



NOTES

1. Since Stephan Thernstrom launched this area of study
with his Progress and Poverty: Social Mobility in a Nineteenth
Century City (Cambridge, Mass.: Harvard University Press,
1964), the bibliography has become much too long to-list here.
Some of the leading recent works include Thernstrom’s The
Other Bostonians: Poverty and Progress in the American
Metropolis, 1880-1970 (Cambridge, Mass.: Harvard Universi-
ty Press, 1973); Michael B. Katz, The People of Hamilton:
Family and Class in a Mid-Nineteenth Century City (Cam-
bridge, Mass.: Harvard University Press, 1975); Clyde and
Sally Griffen, Natives and Newcomers: The Ordering of Op-
portunity of Mid-Nineteenth Century Poughkeepsie (Cam-
bridge, Mass.: Harvard University Press, 1977).

2. If the example which Thernstrom set by depositing his
data at the Historical Data Archives of the Inter-University
Consortium for Political and Social Research at the University
of Michigan could be as widely followed as his path-breaking
studies of historical mobility were, the profession would
benefit greatly. As we hope to demonstrate, secondary data
analyses, too seldom performed by historians, may uncover
new facets of the data. We obtained Data Set ICPSR # 7550
from the consortium. Naturally, neither Thernstrom nor the
ICPSR bears any responsibility for the analyses we performed.

3. The occupational classifications are Thernstrom’s. Age, of
course, could be treated as an interval level variable. We cut it
into categories only in order to illustrate this particular form of
log-linear analysis. The number of cases in the sample was cut
from 3,362 to 1,724 by our decision to exclude the thirty-five
Negroes, white men for whom any data was missing, and,
most importantly, all males under fourteen years of age in
1880. Of our exclusions, 84 percent (1,362 of the 1,628) were
because of age. One indication that eliminating cases for which
there was missing data did not seriously distort our findings
was that the proportion ‘‘found’’ in the smaller sample dif-
fered from that in the larger sample by less than 1 percent. The
age and status variables were collapsed into four and two
categories, repsectively, to simplify the presentation. Log-
linear runs on a 100-cell table with status broken into three
categories and age into five produced results very similar to
those presented below.

4. On this point, see Richard J. Jensen, ‘“‘Found: Fifty
Million Missing Americans,”’ paper delivered at the Social
Science History Association Convention, 8 November 1980.

5. We make no claim to originality in our discussion of log-
linear analysis. We have merely combined the discussions of
other scholars in a way which clarifies the subject, at least to
us. We have relied chiefly upon Yvonne M. Bishop, Stephan
E. Fienberg, and Paul W. Holland, Discrete Multivariate
Analysis: Theory and Practice (Cambridge, Mass.: The MIT
Press, 1975); Stephen E. Fienberg, The Analysis of Cross-
Classified Categorical Data (Cambridge, Mass. and London:
The MIT Press, 1977); Leo A. Goodman, Analyzing
Qualitative/Categorical Data: Log-Linear Models and Latent
Structure Analysis (Cambridge, Mass.: Abt Books, 1978); H.
T. Reynolds, The Analysis of Cross-Classifications (New
York: The Free Press, 1977); and David Knoke and Peter J.
Burke, Log-Linear Models (Beverly Hills, Calif.: Sage
Publications, Inc., 1980). We shall hereafter cite these books
at only a few points, but we acknowledge our general
dependence on them.

6. Note that the superscripts do not mean that, e.g., 7, is
raised to the Mth power. We show below that in the
multiplicative form, a statement that 7% = 1 is equivalent to
saying that the two variables are statistically independent. For
a proof that that is not the case for a linear, additive form,
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such as Fi. = n + 71 + 7%, see Bishop, Fienberg, and
Holland, Discrete Multivariate Analysis, pp. 23-24. There is a
good brief critique of one such technique, AID, in ibid., p.
360.

7. For example, 7 can be divided into ¥, the effect of being
found, and 7, the effect of not being found. The total
number of effects is therefore one for the eta, two for the 7,
two for the 7*, and four the the ™° (i.e., 7S, &%, %, and
r#4*,), for a total of nine.

8. A change from F, to p, does not change the taus, but
does require a redefinition of the eta. (Note that F, = N,.,
where N is the number of observations.) For details on the
redefinition, see Bishop, Fienberg, and Holland, Discrete
Multivariate Analysis, p. 19.

9. The three parallel lines indicate that the gquantities are
equal by definition.

10. Note that if we make the same substitutions into Equa-
tions (10) or (11), the resulting quantities do not equal unity.
Try it.

11. All'Equations (18) through (20) really do is illustrate the
notion of ‘‘closed form’’ estimates and show that substituting
equations (9) to (12) in Equation (8) and simplifying give us the
proper identities. In the special case of saturated models, ex-
pressions like (9) to (12) are equivalent to the ‘‘maximum
likelihood’’ estimates, which may be generated eitiicr tiirough
a more complex procedure or just through inserting the rele-
vant observed proportions in (9) to (12), or, for cases with
larger numbers of variables, analogues of these equations. On
the methods used to generate maximum likelihood estimates
for cross-classification tables, see Bishop, Fienberg, and
Holland, Discrete Multivariate Analysis, chapter 3.

12. The interested reader may consult Bishop, Fienberg, and
Holland, Discrete Multivariate Analysis, chapters 2 and 3.

13. The term “‘fitted marginals” refers to the fact that for
hierarchical models, the maximum likelihood estimates insure
that the estimated marginals are equal to the observed
marginals.

14. See Otis Dudley Duncan, ‘“How Destination Depends on
Origin in the Occupation Mobility Table,’’ American Journal
of Sociology 84 (1979): 793-803; Leo A. Goodman, ‘“Multi-
plicative Models for the Analysis of Occupational Mobility
Tables and Other Kinds of Cross-Classification Tables,”’ ibid.,
pp. 804-19.

15. In the actual analysis, below, of Thernstrom’s data, only
one of the two-variable interactions can be eliminated. Table 8
is purely hypothetical.

16. The reader should be able to satisfy himself just by per-
muting combinations of all four letters that the number of
possible models is much larger than the 37 given in Table 10,
below. The fact that the total number is 113 for the 4-variable
case comes from Bishop, Fienberg, and Holland, Discrete
Muiltivariate Analysis, p. 77.

17. On heteroscedasticity, see, e.g., Eric A. Hanushek and
John E. Jackson, Statistical Methods for Social Scientists
(New York: Academic Press, 1977), pp. 141-46. For an ap-
plication of MCA to nineteenth-century geographical mobility
data, see Michael B. Katz, Michael J. Doucet, and Mark J.
Stern, ‘‘Population Persistence and Early Industrialization in
a Canadian City: Hamilton, Ontario, 1851-1871,” Social
Science History 2 (1978): 208-29. From our textual discussion,
it is obvious that we disagree with Richard J. Jensen’s state-
ment in ‘‘New Presses for Old Grapes: I: Multiple Classifica-




tion Analysis,” Historical Methods 11 (1978): 175-76, that”
MCA may now be considered the ‘technique of choice’ for
most problems in Quantitative social history.”

18. Compare Michael Swafford, ‘“Three Parametric Tech-
niques for Contingency Table Analysis: A Nontechnical Com-
mentary,”’ American Sociological Review 45 (1980): 664-90,
with Takeshi Amemiya, ‘‘Qualitative Response Models: A
Survey,”’ Journal of Economic Literature 19 (1981): 1486-87.

19. Logit (as well as probit and Tobit) analysis can be applied
to left- and/or right-hand side variables measured on nominal,
ordinal, or interval scales, as illustrated, for example, in J.
Morgan Kousser, ‘‘Making Separate Equal: Integration of
Black and White School Funds in Kentucky,” Journal of In-
terdisciplinary History 10 (1980): 399-428.

20. Fienberg, Analysis of Cross-Classified Categorical Data,
chapter 6, contains a good treatment of the relationship be-
tween logit and the more general log-linear model. Fienberg
refers to the logit model in the text as a “linear logistic
response model’’ reserving the term “logit”” for models which
predict ratios of raw numbers in the cell entries, instead of pro-
portions in the cell entries. Formally, however, the two models
are the same, so we make no distinction here. For some em-
pirical results comparing the two, see Swafford, ‘‘Three
Parametric Techniques,’’ pp. 664-90.

To see the relation between the logit and the log-linear coef-
ficients, start with Equation (22) in the text. For p.,, the pro-
portion “‘found,”

(22.1) log pur = logn + N + N + X° + N¥°

+ AYO + NSO 4+ X%,
where the subscripts on every term involving “M’’ indicate
that the equation models the effects of the first level of M
only. Likewise, for the proportion not found,

(22.2) log pai = log g + N + N + X\° + NS

+ NIO + N° + NP
Since it is a mathematical fact that

log(—‘—I;-) =loga — log b,
and we define the logit of variables i, j, and k, considering the
first variable as dependent, as

D,

Dajx
we obtain the equation for that logit by subtracting Equation
(22.2) from Equation (22.1). All terms not involving M drop
out, and we have

(22.3) log pip — log pan = (N — M) + (M — M%)

+ (\W© — M)

+ (A0S — M99,
where the parentheses are inserted for convenience. But by the
assumption stated in equation (7) in the test, transformed into
logarithms,

N o= N
MS  — _)\MS
@24 N = N
NMOS =  _ )\MoOS
Therefore,

(22.5) 10g piyx — 108 P = 2N + 2NMS 4+ 22\MO + 2\MOS,

And if we rename the logit coefficients, and drop the M
superscripts and the constant 2’s because they appear for every
variable on the right-hand side of the equation, we have the
logit equation

(22.6) logB& = W+ W + W + W,
and the W or logit coefficients are equal to twice the relevant

log-linear coefficients. Note aiso that for a two-category
dependent variable expressed in proportions,
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(22.7) pl"k = l - pljk: )
Therefore, the left-hand side of Equation (22.6) can be ex-
pressed as

1k
IOQrI_J‘E,

and, dropping subscripts, we have an equation which looks
very similar to a conventional multiple regression equation:

@2.8) log 7B = W + W + W+ W,

21. {ASO} does not contain the ‘‘dependent’’ variable M at
all. Models 31 and 34-37 do not include an {MS} terms,
although S is part of each of the models.

22. Department of Statistics, University of Chicago, Chicago,
IL 60637.

23. For tables which have zeroes in any cell, many statisticians
advise the user to add some small number, such as 0.50, to
each cell. This makes it possible to estimate many models
which cannot otherwise be estimated because they contain
zeroes in the marginals and also makes convergence go much
faster in tables with zeroes in the cells. Furthermore, it reduces
the “‘asymptotic bias” and the ‘‘mean squared error’’ for
estimates of the lambdas, which, translated into English,
means that if one estimated the coefficients over and over
again from similar data or once from an extremely large sam-
ple, the results would be that the estimated lambdas were on
average closer to the values for the population as a whole if
one added a small value to each cell than if one didn’t. See
Goodman, Analyzing Qualitative/Categorical Data, p. 114.
We should note that some statisticians do not approve of this
procedure and that theoretical and simulation work on it is
needed.

24. For the two-variable case, if lambda is written as

. E a, log f;,
7

where g, is a constant depending on the number of levels for
each variable (if i = j = 2, as in Equations (9) to (12) in the
text, @; = 1/4), then Goodman has shown that the standard
deviation of lambda is the square root of

Z ai/ty
if

for the saturated case, and that this quantity is a lower bound
of the standard deviation of each lambda for unsaturated
models. See Goodman, Analyzing Qualitative/Categorical
Data, p. 114, and citations given there.

25. There are separate lambda effects—not all independent of
each other—calculated for each level of a multi-category
variable. Thus, for instance, there are twenty separate effects
(four categories times five categories) for the interactions of
age and occupation.

26. Table 5 showed weak but significant Chi-Squares between
M and A, M and S, and M and O, taken two at a time. But
since the independent variables were related to each other,
Table 5 distorts the actual nature of the causal relationships.
Table 10, by controlling each of the bivariate relations for the
effects of the other variables, gives a more accurate picture of
the actual effects on M of S, A, and O.

27. No summary statistic based on the idea of ‘‘proportionate
reduction in errors’’ (PRE) can be calculated for log-linear
models, for all estimation algorithms always fit the marginal
relating to the dependent variable exactly. Summary measures
based on the PRE concept calculate the number of errors one
would make in putting subjects into each class of the depend-
ent variable. For example, if 1,113 people in the Boston sub-
sample were found in 1880 and 611 were not found in 1890,
then the best way for an analyst who knew no more about the



people to guess which group each was in would be to put
everyone into the *‘found’’ category. He would therefore guess
wrong 611/1724 = 35.4 percent of the time. PRE measures
are based on gauging how much better the analyst would do if
he had information about, say, the subjects’ ages, occupa-
tions, and so on. But since the internal cell estimates in log-
linear models are obtained by using information about the
marginal cells—for instance, the estimate of the percentage of
teenagers found is based on knowing the percentage of all age
groups found—the marginals will always be fit as closely as
one desires. As a consequence, PRE measures cannot be de-
fined for log-linear models.

28. It is also possible to calculate standardized cell residuals—
i.e., to subtract the actual cell entries in Table 1 from those
estimated using a particular model and then to divide them by
some measure of their variance—in order to assess which cells
fit particularly poorly, or, to put it in more substantive terms,
which combinations of the independent variables do not
predict the dependent variable well. Space limitations prevent
us from describing the procedure more fully, but see, e.g.,
Bishop, Fienberg, and Holland, Discrete Multivariate
Analysis, pp. 136-55.

29. See ibid., pp. 124-30. x? is asymptotically—i.e., for very
large samples—distributed as x*. The partitioning procedure is
based on the handy and well-known fact that the sum of two
independent x? variates also follows the x* distribution.

30. This method of testing is actually a likelihood ratio test.
By contrasting the fit of a given model with the observed fre-
quencies or proportions, x in effect compares the fit of some
given model with that of the saturated model, since the
saturated model fits the observed data exactly. For this and a
series of other tests of goodness of fit in what are often re-
ferred to in the economics literature as ‘‘quantal choice”
methods. See Takeshi Amemiya, ‘‘Qualitative Response
Models,”’ pp. 1502-7.

31. Since every comparison of an acceptable with an
unacceptable model—i.e., between any of Models 18-30 with
any of Models 1-17 which are nested in them—will show a
significant difference, we offer only two of them (Tests 17 and
18). Those tests are included in order to allow us to assess the
importance of the terms {40} and {AS}.

32. In logit, as in the usual multiple regression, all possible
relationships between independent variables must be allowed
for, but analysts do not usually pay much attention to them. In
this case, {450} would appear in every logit model. That the
analyst is not so constrained in log-linear analysis seems to us
an advantage.

33. Actually, we tried all five of the models formed by
eliminating one two-variable term at a time from Model 34, as
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well as all ten of the models formed by eliminating two terms
at a time. All fail the tests against Model 34 by larger margins
than do 35-37.

34. Thernstrom, Other Bostonians, Table 3.3, p. 40.
35. Ibid., pp. 42, 231-2.

36. In his ‘‘Found: Fifty Million Missing Americans,’’ Jensen
has suggested that low-measured rates of persistence were to a
large degree artifacts of the sloppiness of census takers, the
employees of city directory companies, and transcribers.

A 37. Thernstrom does not specifically treat the connection be-

tween age and social mobility, although he does “control for”’
age, in a fashion, by confining some of his tables to men be-
tween the ages of twenty and thirty-nine. See, e.g., Other
Bostonians, Table 4.3, p. 53. Some of his tables—e.g., Tables
4.6 and 4.7 on pp. 60 and 61—imply that people did move up
the occupational ladder over time from 1880 to 1900.

38. For a review of the ‘*human capital’’ and other economic
approaches to the topic of geographic mobility, see Michael J.
Greenwood, ““Research on Internal Migration in the United
States: A Survey,” Journal of Economic Literature 13 (1975):
397-433, especially pp. 406-8. On human capital, the
(neo)classic starting point is, of course, Gary S. Becker,
Human Capital, 2nd ed. (Chicago: University of Chicago
Press, 1975).

39. Using national figures on age-specific mortality, we ran
analyses in every respect parallel to those presented herein,
eliminating the estimated proportion of men of each age who
could be expected to have died in the decade. Unfortunately,
we know of no occupation-specific estimates, but if they were
available, they could hardly help strengthening the general
points made in the text. The parallel analyses lead to the same
model choice and generally track the argument so as to make
their presentation needless.

40. Other Bostonians, p. 258.

41. There are a great many illustrations of applications of log-
linear and related methods in the economics literature listed
and cited in Amemiya, *‘Qualitative Response Models,”” pp.
1483-84. For an interesting historical example of the use of
log-linear techniques to evaluate the validity of mortality
statistics, using a capture-recapture model, see Sheryl B. Dow,
“The Mortality Rate in Norfolk, Virginia, in 1870: A New Ap-
proach to the Application of the Capture-Recapture Method"”’
(unpublished paper, Harvard University, 1981). The problem
of the degree to which occupational mobility is merely a pro-
duct of a shift in the mix of jobs might also be approached by
concentrating attention on the relevant single-letter terms in
the sorts of models discussed in our paper. In fact, the range of
applications seems limited more by analysts’ imaginations than
by data or computer availability.




