Chapter 2

Present Value

Road Map

Part A Introduction to finance.

- Financial decisions and financial markets.
- Present value.

Part B Valuation of assets, given discount rates.
Part C Determination of risk-adjusted discount rates.
Part D Introduction to derivatives.

Main Issues

- Present Value
- Compound Interest Rates
- Nominal versus Real Cash Flows and Discount Rates
- Shortcuts to Special Cash Flows

1 Valuing Cash Flows

"Visualizing" cash flows.

Example. Drug company develops a flu vaccine.

- Strategy A: To bring to market in 1 year, invest $\$ 1 \mathrm{~B}$ (billion) now and returns $\$ 500 \mathrm{M}$ (million), $\$ 400 \mathrm{M}$ and $\$ 300 \mathrm{M}$ in years 1,2 and 3 respectively.
- Strategy B: To bring to market in 2 years, invest $\$ 200 \mathrm{M}$ in years 0 and 1 . Returns $\$ 300 \mathrm{M}$ in years 2 and 3 .

Which strategy creates more value?

Problem. How to value/compare CF streams.

1.1 Future Value (FV)

How much will $\$ 1$ today be worth in one year?
Current interest rate is r, say, 4\%.

- \$1 investable at a rate of return $r=4 \%$.
- FV in 1 year is

$$
F V=1+r=\$ 1.04
$$

- FV in t years is

$$
\begin{aligned}
F V & =\$ 1 \times(1+r) \times \cdots \times(1+r) \\
& =(1+r)^{t} .
\end{aligned}
$$

Example. Bank pays an annual interest of 4\% on 2 -year CDs and you deposit $\$ 10,000$. What is your balance two years later?

$$
F V=10,000 \times(1+0.04)^{2}=\$ 10,816 .
$$

1.2 Present Value (PV)

We can ask the question in reverse (interest rate $r=4 \%$).
What is the PV of $\$ 1$ received a year from now?

- Consider putting away $1 / 1.04$ today. A year later receive:

$$
\frac{1}{1.04} \times(1+0.04)=1
$$

- The PV of $\$ 1$ received a year from now is:

$$
\frac{1}{1+r}=\frac{1}{1+0.04}
$$

- The present value of $\$ 1$ received t years from now is:

$$
P V=\frac{1}{(1+r)^{t}}
$$

Example. (A) $\$ 10 \mathrm{M}$ in 5 years or (B) $\$ 15 \mathrm{M}$ in 15 years. Which is better if $r=5 \%$?

$$
\begin{aligned}
& P V_{A}=\frac{10}{1.05^{5}}=7.84 \\
& P V_{B}=\frac{15}{1.05^{15}}=7.22
\end{aligned}
$$

Solution to Example. Flu Vaccine.

Assume that $r=5 \%$.

Strategy A:

Time	0	1	2	3
Cash Flow	$-1,000$	500.0	400.0	300.0
Present Value	$-1,000$	476.2	362.8	259.2
			Total PV	98.2

Strategy B:

Time	0	1	2	3
Cash Flow	-200	-200.0	300.0	300.0
Present Value	-200	-190.5	272.1	259.2
			Total PV	140.8

Firm should choose strategy B, and its value would increase by \$140.8 M.

2 Compound Interest Rates

2.1 APR and EAR

Sometimes, interest rate is quoted as an annual percentage rate (APR) with an associated compounding interval.

Example. Bank of America's one-year CD offers 5\% APR, with semi-annual compounding. If you invest $\$ 10,000$, how much money do you have at the end of one year? What is the actual annual rate of interest you earn?

- Quoted APR of $r_{\text {APR }}=5 \%$ is not the actual annual rate.
- It is only used to compute the 6-month interest rate as follows:

$$
(5 \%)(1 / 2)=2.5 \% .
$$

- Investing $\$ 10,000$, at the end of one year you have:

$$
10,000(1+0.025)(1+0.025)=10,506.25
$$

In the second 6-month period, you earn interest on interest.

- The actual annual rate, the effective annual rate (EAR), is

$$
r_{\text {EAR }}=(1+0.025)^{2}-1=5.0625 \% .
$$

Annual rates typically refer to EARs.

2.2 Compounding

Let $r_{\text {APR }}$ be the annual percentage rate and k be the number of compounding intervals per year. One dollar invested today yields:

$$
\left(1+\frac{r_{\mathrm{APR}}}{k}\right)^{k}
$$

dollars in one year.
Effective annual rate, $r_{\text {EAR }}$ is given by:

$$
\left(1+r_{\mathrm{EAR}}\right)=\left(1+\frac{r_{\mathrm{APR}}}{k}\right)^{k}
$$

or

$$
r_{\mathrm{EAR}}=\left(1+\frac{r_{\mathrm{APR}}}{k}\right)^{k}-1
$$

Example. Suppose $r_{\text {APR }}=5 \%$:

k	Value of \$1 in a year	$r_{\text {EAR }}$
1	1.050000	5.0000%
2	1.050625	5.0625%
12	1.051162	5.1162%
365	1.051268	5.1267%
8,760	1.051271	5.1271%
\vdots	\vdots	\vdots
∞	$e^{0.05}=1.051271$	5.1271%

Here, $e \approx 2.71828$.

3 Real vs. Nominal CFs and Rates

Nominal vs. Real CFs
Inflation is 4\% per year. You expect to receive $\$ 1.04$ in one year, what is this CF really worth next year?

The real or inflation adjusted value of $\$ 1.04$ in a year is

$$
\text { Real CF }=\frac{\text { Nominal CF }}{1+\text { inflation }}=\frac{1.04}{1+0.04}=\$ 1.00
$$

In general, at annual inflation rate of i we have

$$
(\text { Real CF })_{t}=\frac{(\text { Nominal CF })_{t}}{(1+i)^{t}}
$$

Nominal vs. Real Rates

- Nominal interest rates - typical market rates.
- Real interest rates - interest rates adjusted for inflation.

Example. $\$ 1.00$ invested at a 6% interest rate grows to $\$ 1.06$ next year. If inflation is 4% per year, then the real value is $\$ 1.06 / 1.04=1.019$. The real return is 1.9%.

$$
1+r_{\text {real }}=\frac{1+r_{\text {nominal }}}{1+i}
$$

Example. Sales is $\$ 1 \mathrm{M}$ this year and is expected to have real growth of 2% next year. Inflation is expected to be 4%. The appropriate nominal discount rate is 5%. What is the present value of next year's sales revenue?

- Next year's nominal sales forecast:

$$
1 \times 1.02 \times 1.04=1.0608
$$

$$
P V=\frac{1.0608}{1.05}=1.0103
$$

- Next year's real sales forecast:

$$
1 \times 1.02=1.02
$$

Real discount rate:

$$
\begin{aligned}
r_{\text {real }} & =\frac{1+r_{\mathrm{n}}}{1+i}-1=\frac{1.05}{1.04}-1=0.9615 \% \\
P V & =\frac{1.02}{1.009615}=1.0103 .
\end{aligned}
$$

Important Rules:

- Discount nominal CFs by nominal discount rates.
- Discount real CFs by real discount rates.

4 Shortcuts to Special Cash Flows

4.1 Annuity

Today is $t=0$ and cash flow starts at $t=1$.

$$
\begin{aligned}
\mathrm{PV}(\text { Annuity }) & =\frac{A}{1+r}+\frac{A}{(1+r)^{2}}+\cdots+\frac{A}{1+r)^{T}} \\
& =A \times \frac{1}{r}\left[1-\frac{1}{(1+r)^{T}}\right]
\end{aligned}
$$

Example. An insurance company sells an annuity of $\$ 10,000$ per year for 20 years. Suppose $r=5 \%$. What should the company sell it for?

$$
\begin{aligned}
P V & =10,000 \times \frac{1}{0.05} \times\left(1-\frac{1}{1.05^{20}}\right)=10,000 \times 12.46 \\
& =124,622.1
\end{aligned}
$$

$\mathrm{FV}($ Annuity $)=\mathrm{PV}($ Annuity $) \times(1+r)^{T}$.

4.2 Annuity with Growth

PV (growing annuity)

$$
\begin{aligned}
& =A \times\left[\frac{1}{1+r}+\frac{1+g}{(1+r)^{2}}+\cdots+\frac{(1+g)^{T-1}}{(1+r)^{T}}\right] \\
& =A \times \begin{cases}\frac{1}{r-g}\left[1-\left(\frac{1+g}{1+r}\right)^{T}\right] & \text { if } r \neq g \\
\frac{T}{1+r} & \text { if } r=g .\end{cases}
\end{aligned}
$$

Example. Saving for retirement - Suppose that you are now 30 and would like $\$ 2$ million at age 65 for your retirement. You would like to save each year an amount that grows by 5% each year. How much should you start saving now, assuming that $r=8 \%$?

$$
A=\frac{2,000,000}{308.977}=6,472.97
$$

4.3 Perpetuity

A perpetuity is an annuity with infinite maturity.

Example. You just won the lottery and it pays $\$ 100,000$ a year for 20 years. Are you a millionaire? Suppose that $r=10 \%$.

$$
\begin{aligned}
P V & =100,000 \times \frac{1}{0.10}\left(1-\frac{1}{1.10^{20}}\right)=100,000 \times 8.514 \\
& =851,356
\end{aligned}
$$

- What if the payments last for 50 years?

$$
\begin{aligned}
\text { PV } & =100,000 \times \frac{1}{0.10}\left(1-\frac{1}{1.10^{50}}\right)=100,000 \times 9.915 \\
& =991,481
\end{aligned}
$$

- How about forever - a perpetuity?

$$
P V=100,000 / 0.10=1,000,000 .
$$

$\mathrm{PV}($ Perpetuity $)=\frac{A}{r}$.

4.4 Perpetuity with Growth

PV (Perpetuity with growth $)=\frac{A}{r-g}$
where A is the first CF one period from now.

Example. Super Growth Inc. will pay an annual dividend next year of $\$ 3$. After analyzing the company, you expect the dividend after that to grow at the rate of 5% per year forever. Also for companies of this risk class, the expected return is 10%. What should be Super Growth's price per share?

$$
\begin{aligned}
P V & =\frac{3}{1.10}+\frac{3(1+0.05)}{1.10^{2}}+\frac{3(1+0.05)^{2}}{1.10^{3}}+\cdots \\
& =\frac{3}{0.10-0.05} \\
& =60
\end{aligned}
$$

Example. Mortgage calculation in the U.S.

- Pay 20% down payment, and borrow the rest from the bank using the property as collateral.
- Pay a fixed monthly payment for the life of the mortgage.
- Have the option to prepay the mortgage anytime before the maturity date of the mortgage.

Suppose that you bought a house for $\$ 500,000$ with $\$ 100,000$ down payment and financed the rest with a thirty-year fixed rate mortgage at 8.5% APR compounded monthly.

- The monthly payment M is determined by

$$
\begin{aligned}
& \begin{aligned}
400,000 & =\sum_{t=1}^{360} \frac{M}{[1+(0.085 / 12)]^{t}} \\
& =\frac{M}{(0.085 / 12)}\left\{1-\frac{1}{[1+(0.085 / 12)]^{360}}\right\} \\
& =M \times \frac{(0.9212)}{(0.085 / 12)}
\end{aligned} \\
& M=\$ 3,075.65
\end{aligned}
$$

- Your effective annual interest rate (EAR):

$$
[1+(0.085 / 12)]^{12}-1=1.08839-1=8.839 \%
$$

The monthly payments are as follows:

t (month)	Principal	Interest	Sum	Remaining P.
1	242.37	2833.33	3075.7	$399,757.63$
2	244.08	2831.62	3075.7	$399,513.55$
3	245.81	2829.89	3075.7	$399,267.74$
\vdots	\vdots	\vdots	\vdots	\vdots
120	561.29	2514.42	3075.7	$354,415.49$
121	565.26	2510.44	3075.7	$353,850.23$
\vdots	\vdots	\vdots	\vdots	\vdots
240	1309.27	1766.43	3075.7	$248,068.95$
241	1318.54	1757.16	3075.7	$246,750.41$
\vdots	\vdots	\vdots	\vdots	\vdots
359	3032.60	43.10	3075.7	$3,054.07$
360	3054.07	21.63	3075.7	0.00

- Total monthly payment is the same for each month.
- The percentage of principal payment increases over time.
- The percentage of interest payment decreases over time.

5 Homework

Readings:

- BMA Chapter 3.

Assignment:

- Problem Set 1.

