| NAME | <u>. </u> | |--|--| | 1. | 03 QUIZ 5 Please define the efficient portfolio frontier:The set of portfolio with minimal variance condition on return | | 2. | Stock A has expected return r_A and stock B has return r_b What is the expected return of a | | portfoli | o is weighted W_A on stock a and the rest W_B on Stock B? | | Let r _p b | e the portfolio return $\mathbf{r}_{\mathrm{f}} = W_A r_A + W_B r_b$ | | σ_{AB} if a
Let σ_p^2 b | Stock A has variance σ_A^2 , stock B has variance σ_B^2 , and the two stocks have covariance portfolio is equally weighted with each stock what is its variance? be the portfolio variance. $\sigma_p^2 = W_A^2 \sigma_A^2 + 2W_A W_b \sigma_{AB} + W_B^2 \sigma_B^2$ ase of the equally weighted portfolio $\sigma_p^2 = 0.25\sigma_A^2 + 0.5\sigma_{AB} + 0.25\sigma_B^2$ | | | | 4. Suppose $r_{A} > r_{b}$. What portfolio produces a return equal to r^{*} where $r_{A} > r^{*} > r_{B}$? what is its variance? _______ We need to find W^{*} _such that _____ $r^{*} = W^{*} r_{A} + (1 - W^{*}) r_{b}$ ____ $r^{*} = W^{*} r_{A} + (1 - W^{*}) r_{B} \iff r^{*} = W^{*} (r_{A} - r_{B}) + r_{B}$ Or $W^{*} = (r^{*} - r_{B}) / (r_{A} - r_{B})$ $\sigma_{p}^{2} = \left(\frac{r^{*} - r_{B}}{r_{A} - r_{B}}\right)^{2} \sigma_{A}^{2} + 2\left(\frac{r^{*} - r_{B}}{r_{A} - r_{B}}\right) \left[1 - \left(\frac{r^{*} - r_{B}}{r_{A} - r_{B}}\right)\right] \sigma_{AB} + \left[1 - \left(\frac{r^{*} - r_{B}}{r_{A} - r_{B}}\right)^{2} \sigma_{B}^{2}.$