11-13 Class 14
Option prices,

The multi-period problem; The
Black-Sholes equation and formula



Option prices

Things to remember from last class

Need an expected value of stock conditional
on the strike price (K=S)

— If call E(S;|S>K)

— If put E(S;|S<K)

Need a bond price/ interest rate

Can build a replicating portfolio (borrow b in
bonds and buy a*shares of stock)



One period problem

* Find a portfolio of a stock and b bonds Such that
1. a(S,+A)+b(1+r)=A
2. a(S,-A)+b(1+r)=0
e From (2) b=-a(S,-A)/(1+r)
e Replacein (1) a(S +A)-a((S,-A)/(1+r))(1+r)= A
e a(S,+A)-a(S,-A)=A
a2l =A
a=% b=-0.5(S,-4)/(1+r)
e Price of the option
C =aS_+b=0.5(rS_+A)/(1+r)
Another way to look at this is
aS, -C=b the stock minus the call is a riskless asset




Can make continuous

Notation (still focus on the call option)

At time zero the option is sold at price C. The stock x has a price
att=0 of S..

The stock price at time T S; has a distribution density f(x) when
the option might be exercised.

The strike price is K=S. B=b(1+r)

The option is exercised if the price is above and that occurs with
a probability F(K).

Denote the expected value of x conditional on

x>kE(x|lx>K) = fmf(x)xdx by E(x)
K

Denote the expected value of x conditional on x<k by E(x)



e |f the option is exercised profits are
C=x—50rC=E{x)—=s5
e Find the replicating portfolio. It solves

aE(x)+B=C (1)
aE(x)+B =0 (2)

1—2=>a(Ex)—E(X))=EX)—S

__E®-5)
CE(@) - E(x)

E(x)(E(®) —8)
E(x) — E(x)




 The cost of the option is the cost of the

replicating portfolio
NPV =C=aS+bh

_E@® =58 (E® —9)E(x)
E®@ -E(x) E® -E(x)
_E@-S)E-E(x))
E(x) — E(x)
Now replace S, E (%), E(x) by their values

_ U Fl)xdx = 5) (5= 1%, fx)xax)

C

[7f)xdx — [°f(x)xdx



Pricing the one period option

e Easy if you have risk
e But (1) what is a period
e (2) what about multi periods?

— Could take a short cut and get the distribution of
outcomes at time T (and don’t worry about T-1 or
T-2)

— Or worry about inter temporal arbitrage.



Two period problem

Stock follows a random walk

Each period stock either goes up or down by
some rate S, ;=S,(1+A)

Want to price an option that expires after two
period and K=§, .

S, takes on 3 possible values

— S (1-A)2, So(1+4)(1-4), S, (1+A)2

— Because Sy(1+A)(1-A)=S,(1-A%)<S, option only
valuable if S, =S_(1+A)?



Option value at time 1

Suppose S; =S_(1+A). Build replicating portfolio for option at strike price
S, Not S,

1. a(Sy(1+A)+b(1+r)=S,(1+A)-S,
2. a(S,(1-A))+b(1+r)= 0
From (2) b=-a(S;(1-4))/(1+r)
Replace in (1) a(S;(1+A))-a((S(1-4))/(1+r))(1+r)= S;(1+ A)-S,
a(S,(1+4))-a(S,(1-A))= S,A-S,
a2A S, =S,A-S, Replace S; with S_(1+r)
a20(1+ A)S, = (1+ 20+ A2)S,-S,
a2A(1+ A)=(2A+ A?) < a2(1+ A)=(2A+A)
A=(2+A)/(2+2A)
b=-(2+ A)/(2+2A)(S,(1-4))/(1+r)
Price of the option at time 1
C,,=aS;+b
C,, =(2+A)/(2+24)S;-(2+4)/(2+2A)(S,(1-A))/(1+r)
Cy, =(2+0)/(2+28)S, [1-(1-1))/(1+r)]
C,, =(2+4)/(2+24)S,[(r+A))/(1+r)]



Exercise the option at t=17

Value of exercising the option now
— S, -K=5,-5_ =S _(1+A)-S_ = AS,
Value of holding on to the option
e C,, =(2+A)/(2+24)S,[(r+A))/(1+r)]
C,, =S,(2+A)(r+A)/[(2+2A)(1+r)] Replace S, with S_(1+r)
e C,, =S, (1+r)(2+A)(r+A))/[(2+2A)(1+r)]
C,, =S, (r+A)(2+A)/(2+24) if r=A
C,, =AS_(2+A)/(1+A)>As,

C,,isincreasing in Aso If r<A C;, > AS,

— So you do not exercise the option

— If r> A then what ever the probability of the upside
the return to the stock is less than the risk free
interest rate so you do not invest.



Period O

Note if S; =S (1-A), C,,= 0. Period stock values are either S_(1-A)?,
or S,(1+A)(1-A) both of which are less than the call.
e The option at time 1 can take on two values
— Cy, =S, (r+A)(2+A)/(2+24)
— Cp=0
e Now we can construct a replicating portfolio
1. a(Sy(1+A))+b(1+r)=C,,
2. a(Sy(1-A))+b(1+r)=0

b=-a(S,(1-A))/(1+r) then
a(Sy(1+A))-a(S,(1-A))(1+r)/(1+r) = C,,
a(Sy(1+4A))-a(S,(1-4))=S,(r+A)(2+A)/(2+24)
aSy(24)=S (r+A)(2+A)/(2+2A)
a=[(r+A)(2+A)]/[2A(2+240)]
Value of option at time 0 is aS-a(S,(1-A))/(1+r)=aS[1-(1-A))/(1+r)]
Or S_[1-(1-A))/(1+r)] [(r+A)(2+A)]/[2A(2+24)]



Beyond the two period problem

The CDF of stock prices evolves over time

Let us think of a binomial problem where A is
small and the interval of time goes to zero..so
that for a unit of time T you are making more and
more draws...

In the limit (by central limit theorem) the value S,
has a normal distribution with some mean
growth rate (pn)and variance (o)

So the question is can we price option in this
context?



Black-Sholes

Solved this problem

Consider a Call option on a stock with current
price S, strike price K, expected growth y,
volatility o. Risk free interest rate isr, and W is
a random variable with mean o

dS= uSdt+ oSdW
What about the call?



Claim (Ito’s lemma)

The change derivative of the call is

dC=[(0C/at)+(0C/0S)uS+(1/2(0°C/03S?%)0%5?]dt+(0
C/0S)oSdW

Consider a portfolio V of h shares minus a call
V=aS-C Remember aS_-C=b
dV=adS —dC and set a= 9C/0S

dV=(dC/aS)dS —dC

Now we can replace by the components



e dS= uSdt+ oSdW

e dC=[(0C/0t)+(0C/0S)uS+(1/2(0%C/dS5?%)0%S?%]dt+(AC/aS)
oSdW

e dV=(0C/dS)dS —dC
So

e dV=(0C/0S)(uSdt+oSdW)—
[(0C/0t)+(0C/0S)uS+(1/2(0%C/0S%)o?S?]dt+(0C/0S)oSdW

e Cancel the (0C/0S)oSdW terms
o dV=
(0C/0S)(uSdt)—[(0C/at)+(0C/dS)uS+(1/2(0%C/0S?%)02S?%]dt



e dV=
(0C/AS)(USdt)—[(0C/At)+(0C/AS)uS+(1/2(02C/d52)025?] dt
e Cancel the (0C/0S)(uSdt) terms.

 That leaves

e dV=-[(0C/0t)+ +(1/2(02C/0S?)02S?]dt

 The portfolio is independent of the growth
rate (1) or the random variable (W)

* Its perfectly hedged just like V, =aS_-C

e But that means its return must be the risk free
rate



Implication of the perfect hedge

o dV=-[(0C/at)+ +(1/2(0%C/05?%)0?S?%]dt

e dV=rVdt=r(0C/0S)S —C]dt

e (0C/0t)+ +(1/2(0°C/052%)0°S%=-r(0C/0S)S +rC
e (0C/0at)+ r(0C/0S)S +(1/2(04°C/aS?%)o%5°=rC

 And that is the Black-Sholes differential
equation for call options when the stock is has
an normal distribution (,0?).

* This has very well behaved solutions.



From the Equation to the formula

 The value of a call given stock price S, strike price K,
exercise at T is value of the replicating portfolio

C(S,K,T) = SN(x) — fT)TN(x — oVT)

S
In ( T)
N(x) is the cdf normal N(X) = N( KQA+ry”, Jﬁ)

aVT 2

£

o T 2

' S
K In (f{(l T 'r]T) o\T
(147 T 2

0 G ) oT
c(§,K,T)=38N +

18



_ In (SK(1+r)~T  ayT _
C(S,K,T) =58N( T -+ . )
K In (SK(1+7)~"  avT
(1+'F)TN( avT 2 )

e The first part is the stock side
e The second is the amount borrowed

 Soin fact Black Scholes is a mathematical proof

that the binomial approach works in a broad
context



Options since 1973

* Theory

— More and more version of Replicating portfolio
with more and more variations

— Each time you need to build the replicating
portfolio

e Can input Black Scholes formula in

programmable calculators...So can use on the
trading floor.

e Become standard pricing mechanism



Average number of stocks W2 1 (by fiat)
Average number of stocks W3 5.1 (your choices)

Average number of stocks W4 3.9 (your choices)
and 0.77 shorts (55% of you did not short)

Average number of stocks W5 1.5. some of you
did not invest at all

Average number of stocks W6 3.3 average
leverage 18K. 40% did not borrow
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Returns (w3)

Correlation between the absolute value of
change and the number of stocks is -0.41

So undiversified portfolios are the big winners
and Loosers (TESLA)

Diversifed stocks portfolios more stable

Correlation in returns net of S&P 500 returns
week 3-4 -0.03, Week 4-5 0.06 and W5-6 -0.01

— That efficient markets



