11-13 Class 14 Option prices,

The multi-period problem; The Black-Sholes equation and formula

Option prices

- Things to remember from last class
- Need an expected value of stock conditional on the strike price (K=S)
 - If call $E(S_T | S_T > K)$
 - If put $E(S_T | S_T < K)$
- Need a bond price/ interest rate
- Can build a replicating portfolio (borrow b in bonds and buy a*shares of stock)

One period problem

Find a portfolio of a stock and b bonds Such that

1.
$$a(S_0 + \Delta) + b(1+r) = \Delta$$

2.
$$a(S_o-\Delta)+b(1+r)=0$$

- From (2) b=-a(S_0 - Δ)/(1+r)
- Replace in (1) $a(S_o + \Delta) a((S_o \Delta)/(1+r))(1+r) = \Delta$

•
$$a(S_o + \Delta) - a(S_o - \Delta) = \Delta$$

 $a2\Delta = \Delta$

$$a = \frac{1}{2}$$

$$b=-0.5(S_0-\Delta)/(1+r)$$

Price of the option

$$C = aS_o + b = 0.5(rS_o + \Delta)/(1+r)$$

Another way to look at this is

aS_o -C=b the stock minus the call is a riskless asset

Can make continuous

- Notation (still focus on the call option)
- At time zero the option is sold at price C. The stock x has a price at t=0 of S.
- The stock price at time TS_T has a distribution density f(x) when the option might be exercised.
- The strike price is K=S.
- The option is exercised if the price is above and that occurs with a probability F(K).

B=b(1+r)

Denote the expected value of x conditional on

$$x > k E(x|x > K) = \int_{K}^{\infty} f(x)x dx$$
 by $E(\overline{x})$

• Denote the expected value of x conditional on $x \le k$ by E(x)

If the option is exercised profits are

$$C = x - s \text{ or } C = E(\overline{x}) - s$$

Find the replicating portfolio. It solves

$$aE(\overline{x}) + B = C \tag{1}$$

$$aE(\underline{x}) + B = 0 \tag{2}$$

$$1 - 2 => a(E(\overline{x}) - E(\overline{x})) = E(\overline{x}) - S$$

$$a = \frac{(E(\overline{x}) - S)}{E(\overline{x}) - E(\underline{x})}$$

$$B = -\frac{E(\underline{x})(E(\overline{x}) - S)}{E(\overline{x}) - E(\underline{x})}$$

The cost of the option is the cost of the replicating portfolio

$$NPV = C = aS + b$$

$$= \frac{(E(\overline{x}) - S)S}{E(\overline{x}) - E(\underline{x})} - \frac{(E(\overline{x}) - S)E(\underline{x})}{E(\overline{x}) - E(\underline{x})}$$

$$= \frac{(E(\overline{x}) - S)(S - E(\underline{x}))}{E(\overline{x}) - E(\underline{x})}$$

Now replace $S, E(\overline{x}), E(\underline{x})$ by their values

$$c = \frac{\left(\int_{K}^{\infty} f(x)xdx - S\right)\left(S - \int_{-\infty}^{K} f(x)xdx\right)}{\int_{K}^{\infty} f(x)xdx - \int_{-\infty}^{K} f(x)xdx}$$

Pricing the one period option

- Easy if you have risk
- But (1) what is a period
- (2) what about multi periods?
 - Could take a short cut and get the distribution of outcomes at time T (and don't worry about T-1 or T-2)
 - Or worry about inter temporal arbitrage.

Two period problem

- Stock follows a random walk
- Each period stock either goes up or down by some rate $S_{t+1}=S_t(1\pm\Delta)$
- Want to price an option that expires after two period and K=S₀.
- S₂ takes on 3 possible values
 - $-S_o(1-\Delta)^2$, $S_o(1+\Delta)(1-\Delta)$, $S_o(1+\Delta)^2$
 - Because $S_0(1+\Delta)(1-\Delta)=S_0(1-\Delta^2)< S_0$ option only valuable if $S_2=S_0(1+\Delta)^2$

Option value at time 1

• Suppose $S_1 = S_0(1+\Delta)$. Build replicating portfolio for option at strike price S_0 Not S_1

1.
$$a(S_1(1+\Delta)+b(1+r)=S_1(1+\Delta)-S_0$$

2. $a(S_1(1-\Delta))+b(1+r)=0$

- From (2) b=-a($S_1(1-\Delta)$)/(1+r)
- Replace in (1) a(S₁(1+Δ))-a((S₁(1-Δ))/(1+r))(1+r)= S₁(1+ Δ)-S₀ a(S₁(1+Δ))-a(S₁(1-Δ))= S₁Δ-S₀ a2Δ S₁ = S₁Δ-S₀ Replace S₁ with S₀(1+r) a2Δ(1+ Δ)S₀ = (1+ 2Δ+ Δ²)S₀-S₀ a2Δ(1+ Δ)=(2Δ+ Δ²) \Leftrightarrow a2(1+ Δ)=(2Δ+Δ) A=(2+Δ)/(2+2Δ) b=-(2+Δ)/(2+2Δ)(S₁(1-Δ))/(1+r)

Price of the option at time 1

$$C_{1u} = aS_1 + b$$
 $C_{1u} = (2+\Delta)/(2+2\Delta)S_1 - (2+\Delta)/(2+2\Delta)(S_1(1-\Delta))/(1+r)$
 $C_{1u} = (2+\Delta)/(2+2\Delta)S_1[1-(1-\Delta))/(1+r)]$
 $C_{1u} = (2+\Delta)/(2+2\Delta)S_1[(r+\Delta))/(1+r)]$

Exercise the option at t=1?

Value of exercising the option now

$$-S_1 - K = S_1 - S_0 = S_0 (1 + \Delta) - S_0 = \Delta S_0$$

- Value of holding on to the option
 - $C_{1u} = (2+\Delta)/(2+2\Delta)S_1[(r+\Delta))/(1+r)$

 $C_{1u} = S_1(2+\Delta)(r+\Delta)/[(2+2\Delta)(1+r)]$ Replace S_1 with $S_0(1+r)$

• $C_{1u} = S_o(1+r)(2+\Delta)(r+\Delta)/[(2+2\Delta)(1+r)]$

 $C_{1u} = S_o(r+\Delta)(2+\Delta)/(2+2\Delta)$ if $r = \Delta$

$$C_{1u} = \Delta S_o(2+\Delta)/(1+\Delta) > \Delta S_o$$

- C_{1u} is increasing in Δ so If $r < \Delta C_{1u} > \Delta S_o$
 - So you do not exercise the option
 - If r> Δ then what ever the probability of the upside the return to the stock is less than the risk free interest rate so you do not invest.

Period 0

- Note if $S_1 = S_o(1-\Delta)$, $C_{1u} = 0$. Period stock values are either $S_o(1-\Delta)^2$, or $S_o(1+\Delta)(1-\Delta)$ both of which are less than the call.
- The option at time 1 can take on two values

$$- C_{1u} = S_o(r+Δ)(2+Δ)/(2+2Δ)$$

$$- C_{1D} = 0$$

Now we can construct a replicating portfolio

1.
$$a(S_0(1+\Delta))+b(1+r)=C_{1u}$$

2.
$$a(S_O(1-\Delta))+b(1+r)=0$$

```
b=-a(S<sub>o</sub>(1-\Delta))/(1+r) then

a(S<sub>o</sub>(1+\Delta))-a(S<sub>o</sub>(1-\Delta))(1+r)/(1+r) = C<sub>1u</sub>

a(S<sub>o</sub>(1+\Delta))-a(S<sub>o</sub>(1-\Delta))=S<sub>o</sub>(r+\Delta)(2+\Delta)/(2+2\Delta)

aS<sub>o</sub>(2\Delta)=S<sub>o</sub>(r+\Delta)(2+\Delta)/(2+2\Delta)

a=[(r+\Delta)(2+\Delta)]/[2\Delta(2+2\Delta)]
```

Value of option at time 0 is
$$aS_o-a(S_o(1-\Delta))/(1+r)=aS_o[1-(1-\Delta))/(1+r)]$$

Or $S_o[1-(1-\Delta))/(1+r)][(r+\Delta)(2+\Delta)]/[2\Delta(2+2\Delta)]$

Beyond the two period problem

- The CDF of stock prices evolves over time
- Let us think of a binomial problem where Δ is small and the interval of time goes to zero..so that for a unit of time T you are making more and more draws...
- In the limit (by central limit theorem) the value S_t has a normal distribution with some mean growth rate (μ)and variance (σ)
- So the question is can we price option in this context?

Black-Sholes

- Solved this problem
- Consider a Call option on a stock with current price S, strike price K, expected growth μ , volatility σ . Risk free interest rate is r, and W is a random variable with mean σ
- $dS = \mu Sdt + \sigma SdW$
- What about the call?

Claim (Ito's lemma)

The change derivative of the call is

$$dC = [(\partial C/\partial t) + (\partial C/\partial S)\mu S + (1/2(\partial^2 C/\partial S^2)\sigma^2 S^2]dt + (\partial C/\partial S)\sigma SdW$$

Consider a portfolio V of h shares minus a call

dV=adS-dC and set $a=\partial C/\partial S$

$$dV = (\partial C/\partial S)dS - dC$$

Now we can replace by the components

- dS= μSdt+ σSdW
- $dC=[(\partial C/\partial t)+(\partial C/\partial S)\mu S+(1/2(\partial^2 C/\partial S^2)\sigma^2 S^2]dt+(\partial C/\partial S)\sigma^2 S^2]dt$
- $dV = (\partial C/\partial S)dS dC$

So

- $dV=(\partial C/\partial S)(\mu Sdt+\sigma SdW) [(\partial C/\partial t)+(\partial C/\partial S)\mu S+(1/2(\partial^2 C/\partial S^2)\sigma^2 S^2]dt+(\partial C/\partial S)\sigma SdW$
- Cancel the (∂C/∂S)σSdW terms
- dV=

 $(\partial C/\partial S)(\mu Sdt) - [(\partial C/\partial t) + (\partial C/\partial S)\mu S + (1/2(\partial^2 C/\partial S^2)\sigma^2 S^2]dt$

• $dV = (\partial C/\partial S)(\mu Sdt) - [(\partial C/\partial t) + (\partial C/\partial S)\mu S + (1/2(\partial^2 C/\partial S^2)\sigma^2 S^2]dt$

- Cancel the $(\partial C/\partial S)(\mu Sdt)$ terms.
- That leaves
- $dV = -[(\partial C/\partial t) + +(1/2(\partial^2 C/\partial S^2)\sigma^2 S^2]dt$
- The portfolio is independent of the growth rate (μ) or the random variable (W)
- Its perfectly hedged just like V_o =aS_o-C
- But that means its return must be the risk free rate

Implication of the perfect hedge

- $dV = -[(\partial C/\partial t) + +(1/2(\partial^2 C/\partial S^2)\sigma^2 S^2]dt$
- dV=rVdt=r(∂C/∂S)S -C]dt
- $(\partial C/\partial t) + +(1/2(\partial^2 C/\partial S^2)\sigma^2 S^2 = -r(\partial C/\partial S)S + rC$
- $(\partial C/\partial t) + r(\partial C/\partial S)S + (1/2(\partial^2 C/\partial S^2)\sigma^2 S^2 = rC$
- And that is the Black-Sholes differential equation for call options when the stock is has an normal distribution (μ , σ ²).
- This has very well behaved solutions.

From the Equation to the formula

 The value of a call given stock price S, strike price K, exercise at T is value of the replicating portfolio

$$C(S,K,T) = SN(x) - \frac{K}{(1+r)^T}N(x - \sigma\sqrt{T})$$

N(x) is the cdf normal
$$N(X) = N\left(\frac{\ln\left(\frac{S}{K(1+r)^T}\right)}{\sigma\sqrt{T}} + \frac{\sigma\sqrt{T}}{2}\right)$$

$$c(S, K, T) = SN \left(\frac{\ln \left(\frac{S}{K(1+r)^T} \right)}{\sigma \sqrt{T}} + \frac{\sigma \sqrt{T}}{2} \right)$$
$$-\frac{K}{(1+r)} N \left(\frac{\ln \left(\frac{S}{K(1+r)^T} \right)}{\sigma \sqrt{T}} - \frac{\sigma \sqrt{T}}{2} \right)$$

$$C(S, K, T) = SN\left(\frac{\ln(SK(1+r)^{-T})}{\sigma\sqrt{T}} + \frac{\sigma\sqrt{T}}{2}\right) - \frac{K}{(1+r)^T}N\left(\frac{\ln(SK(1+r)^{-T})}{\sigma\sqrt{T}} - \frac{\sigma\sqrt{T}}{2}\right)$$

- The first part is the stock side
- The second is the amount borrowed
- So in fact Black Scholes is a mathematical proof that the binomial approach works in a broad context

Options since 1973

- Theory
 - More and more version of Replicating portfolio with more and more variations
 - Each time you need to build the replicating portfolio
- Can input Black Scholes formula in programmable calculators...So can use on the trading floor.
- Become standard pricing mechanism

- Average number of stocks W2 1 (by fiat)
- Average number of stocks W3 5.1 (your choices)
- Average number of stocks W4 3.9 (your choices) and 0.77 shorts (55% of you did not short)
- Average number of stocks W5 1.5. some of you did not invest at all
- Average number of stocks W6 3.3 average leverage 18K. 40% did not borrow

Returns (w3)

- Correlation between the absolute value of change and the number of stocks is -0.41
- So undiversified portfolios are the big winners and Loosers (TESLA)
- Diversifed stocks portfolios more stable
- Correlation in returns net of S&P 500 returns week 3-4 -0.03, Week 4-5 0.06 and W5-6 -0.01
 - That efficient markets