10-30 Class 10: Market efficiency

Investors and Alpha and Beta
Problems with CAPM
Variation in the price of risk
Variation in alpha.
Your portfolios

Lessons from CAPM

- Future stock returns are predicted by
- (1) the riskless return
- (2) the amount of systematic risk in a security times the price of risk
- So if model is right you can "make" money (earn above the risk free rate) only if you bear risk
- If model is wrong by taking advantage of its anomalies.

Staying with the model

- Chasing β
 - The return to bearing risk is positive
 - And possibly large
 - But there are down sides
- Works if you can be patient
- Attractive when the price of the riskless asset is low
- So Fed pushes down interest rates => bearing risk more attractive

Annualized Monthly Returns of the S&P-500 (R_M) net of 3 year TBill return (R_F)

From Previous slide

200.00%

150.00%

Clearly see moments
 when the price of risk is
 low

And when it is high.

Look at moving average

 Also note the choice of the riskless rate is pretty irrelevant

High β vs low β

- Two interpretations
- From Investor
 - If β is high, firm is very exposed to systematic risk
 - You have to pay the investor to bear that risk
 - If β is low, investor wants a smaller share of the total return per dollar he or she spends
- From Firm
 - High β cost of equity is high
 - Low β cost of equity is low

Distribution of β in your firms

Are β correlated with firm returns

Short run result!

In the short run

- It's the noise (ε) that dominates
- You cannot estimate β off of two weeks
- But these have statistical power over the longer term

Beta correlated with short term variation?

Horizontal axis is the coefficient of variation (st. deviation/average) of price. Vertical axis is β reported by Yahoo finance. Some firms have no reported β .

Beta correlated with short term variation?

Notice large number of firms with very similar β and very different σ .

If not β then α ?

 Recall from last class that we estimate the following relationship

$$(r_i - r_F) = \alpha_i + \beta_{iM}(r_M - r_F) + \varepsilon_i$$

- B is fine, but you have to bear risk.
- Why not pick high α firms?
- These are firm where returns above the risk free rate are larger than CAPM would predict
- Expect these firms to get bid up (α should disappear)
- Problem is that α estimate are very sensitive to sample and period.

Beyond our data

Problems with CAPM

$$(r_i - r_F) = \alpha_i + \beta_{iM}(r_M - r_F) + \varepsilon_i$$

- The model work if and only if no other variable enters the regression (because of the need for everyone to hold the market portfolio)
- In other words the model works if the market is efficient (prices are all you need)

Fama and French 2006

- Value (high book to market value B/M) Vs growth (low book to market value) stocks
- "When we form portfolios on size, B/M, and β, we find that variation in β related to size and B/M is compensated in average returns for 1928 to 1963, but variation in β unrelated to size and B/M goes unrewarded the sample period (1929-2004). [...] We conclude that it is size and B/M, or risks related to them, and not β, that are rewarded in average returns."

Fama and French 2006 (cont)

- What does matter beyond β?
- Small firms have 0.2% return per month over large firms
- Value (high book to market) have a 0.35% return premium over growth firms
- Momentum

Figure 1. Each week from 1983 to 2003, we rank stocks based on their returns over the prior week and form a portfolio comprised of a long position in the top decile of stocks (winners) and a short position in the bottom decile (losers). Gutierrez and Kelley JOURNAL OF FINANCE VOL. FEB. 2008

Replace CAPM with an empirical model

- Add as many factors as you like
- In their case
 - $-\beta$ (more is good)
 - Book to market value (higher is better)
 - Size (large is bad)
 - Momentum (past increase lingers)
- Then as you use these factors in choosing weights you bid up the stocks with higher returns and return the world to a 'pure" CAPM model
- Except you may never get there.

Some evidence of efficiency

Return to your stocks from Week 1 to Week 2

Returns of your portfolios (above S&P 500)

Here we seem to have a classic momentum effect driven by a small number of portfolios. (most did just about the same week 1 as the S&P)

Are portfolio's useful?

Not if you want to win the investment derby when you can only go long on stocks.

- Notice portfolios are left leaning
- Offer similar returns but lower variance
- Could go and find set of stock with similar expected returns as week 1
- But also a lot of dominated portfolios

Did you beat the market?

- Make a random pick
- Your chance of beating the market are 50-50
 - 29% of week 2 stocks beat the market week 3
 - 41% portfolios the market week 3 41%
 - 50% of week 2 stocks beat the market week 4
 - 61% portfolios beat the market week 4
- Make two consecutive picks 25%(LL) 50%(LW or WL) and 25% (WW)
 - 28% LL stocks 65% LW-WL and 7%WW
 - 22% LL portfolios, 52%WL-LW and 26% WW

11-04 Class 11: Intermediaries and assets

- Intermediaries Definition
- There are still spreads
- creating new assets: Transformation;
 Bundling;
- Unbundling;
- Taking positions
- Leverage