BEM 103: Introduction to Finance. Homework 5: Portfolios

Solutions

October 27, 2013

1. Financial Literacy

Answer these questions in 3 steps. (1) give an answer to the question, (2) look over the material assigned for class and find a definition (3) modify if need be your first answer. The goal is not for you to memorize a given answer but to be sure you can explain the concept to someone. If you can't, then you do not control that concept.
(a) Mean-Variance trade-off: curve that shows the lowest variance for any given level of expected return.
(b) Risk Aversion: expected utility is less then utility of expected value.
(c) Expected Utility: sum over all possible values of a portfolio (states of the world), of the utility in a given state times the probability of this state:

$$
\sum_{i} U\left(x_{i}\right) p_{i}
$$

(d) Utility of the expected value:

$$
U\left(\sum_{i} x_{i} p_{i}\right)
$$

(e) Portfolio with Short sales: portfolio that has a short position on one or more securities; having short position means selling securities that are not currently owned, with the intention of subsequently repurchasing them ("covering") at a lower price.
(f) Risk: involves issues where we do not know the exact outcome (e.g. future price), but we can accurately measure the odds (e.g. we know the distribution).
(g) Portfolio Separation: the property that a (large) market can be reduced to a few indices ("funds") without the agents being worse off.
2.
3.

4. Personal finance

Your are a financial advisor, you are advising a client about what investment portfolios to choose. Using the linked CSV file that you can import into Excell or a statistical package propose an optimal portfolio in each of the cases below. In each case your only investment choices are 3-year T-Bills, and three stock funds (NASDAQ, DOW and FTSE100)
(a) Compute the monthly returns for each investment opportunity, then the mean return and the variance-covariance matrix. For each five year period 1991-5 1996-2000, and 2011-present. . . .as well as for the whole period. Denote p_{i} the price in month i of one of the investments opportunities (3-year T-Bills, NASDAQ, DOW or FTSE100). Then the return for that month is

$$
r_{i}=\frac{p_{i+1}}{p_{i}}
$$

The mean return for 5 years is

$$
\frac{1}{60} \sum_{i=1}^{60} r_{i}
$$

The covariance of the returns for $\left\{p_{i}\right\}$ and $\left\{p_{i}^{\prime}\right\}$ is

$$
\frac{1}{60} \sum_{i=1}^{60} r_{i} r_{i}^{\prime}
$$

	Mean			
Period	3-year T-Bills	NASDAQ	DOW	FTSE100
$1991-1995$	1.004744528	1.01651883	1.012618231	1.00617018
$1996-2000$	1.004695942	1.02023991	1.012714509	1.008931072
$2001-2005$	1.002626324	0.999853328	1.000964229	1.002397547
$2006-2010$	1.002274013	1.004479086	1.001588771	1.000079894
$2011-2013$	1.000453115	1.012077652	1.01063849	1.005166594
$1990-2013$	1.003350935	1.010147334	1.00689557	1.00467214

Period	Variance-Covariance Matrix
1991-1995	$\left(\begin{array}{cccc}7.28265 \cdot 10^{-7} & 4.19985 \cdot 10^{-6} & 3.47596 \cdot 10^{-6} & 3.00341 \cdot 10^{-6} \\ 4.19985 \cdot 10^{-6} & 0.001524413 & 0.000432739 & 0.000756144 \\ 3.47596 \cdot 10^{-6} & 0.000432739 & 0.000910511 & 0.0004357 \\ 3.00341 \cdot 10^{-6} & 0.000756144 & 0.0004357 & 0.001901752\end{array}\right)$
$1996-2000$	$\left(\begin{array}{cccc}2.24411 \cdot 10^{-7} & -7.32029 \cdot 10^{-6} & -3.62887 \cdot 10^{-6} & -1.4078 \cdot 10^{-6} \\ -7.32029 \cdot 10^{-6} & 0.008184597 & -0.000375705 & 0.001949826 \\ -3.62887 \cdot 10^{-6} & -0.000375705 & 0.002207588 & -0.000221626 \\ -1.4078 \cdot 10^{-6} & 0.001949826 & -0.000221626 & 0.001749782\end{array}\right)$
2001 - 2005	$\left(\begin{array}{cccc}5.23306 \cdot 10^{-7} & -1.80578 \cdot 10^{-5} & -5.91663 \cdot 10^{-6} & -7.64927 \cdot 10^{-6} \\ -1.80578 \cdot 10^{-5} & 0.00576979 & 1.98054 \cdot 10^{-5} & 0.002225922 \\ -5.91663 \cdot 10^{-6} & 1.98054 \cdot 10^{-5} & 0.001887287 & 2.30431 \cdot 10^{-5} \\ -7.64927 \cdot 10^{-6} & 0.002225922 & 2.30431 \cdot 10^{-5} & 0.001791478\end{array}\right)$
$2006-2010$	$\left(\begin{array}{cccc}1.62443 \cdot 10^{-6} & -9.03358 \cdot 10^{-6} & 7.25068 \cdot 10^{-6} & -9.36944 \cdot 10^{-7} \\ -9.03358 \cdot 10^{-6} & 0.003665735 & 0.000268793 & 0.002831895 \\ 7.25068 \cdot 10^{-6} & 0.000268793 & 0.002206993 & 0.000381277 \\ -9.36944 \cdot 10^{-7} & 0.002831895 & 0.000381277 & 0.003300254\end{array}\right)$
2011 - 2013	$\left(\begin{array}{cccc}5.57842 \cdot 10^{-8} & -1.78206 \cdot 10^{-6} & 1.16091 \cdot 10^{-6} & -8.70252 \cdot 10^{-7} \\ -1.78206 \cdot 10^{-6} & 0.001701492 & 9.59403 \cdot 10^{-5} & 0.001223007 \\ 1.16091 \cdot 10^{-6} & 9.59403 \cdot 10^{-5} & 0.001081424 & -4.73667 \cdot 10^{-5} \\ -8.70252 \cdot 10^{-7} & 0.001223007 & -4.73667 \cdot 10^{-5} & 0.001381979\end{array}\right)$
1990-2013	$\left(\begin{array}{cccc}3.23378 \cdot 10^{-6} & -8.52268 \cdot 10^{-7} & 3.22362 \cdot 10^{-6} & 2.11646 \cdot 10^{-6} \\ -8.52268 \cdot 10^{-7} & 0.004452642 & 0.00016297 & 0.001891651 \\ 3.22362 \cdot 10^{-6} & 0.00016297 & 0.001756636 & 0.000153026 \\ 2.11646 \cdot 10^{-6} & 0.001891651 & 0.000153026 & 0.002141459\end{array}\right)$

(b) Compute the efficient frontier for the data over the whole period ${ }^{1}$.

Portfolio: $w=\left(w_{3 T B}, w_{N A S}, w_{D O W}, w_{100}\right)^{\prime}$.
Mean returns:

$$
r=\left(\begin{array}{llll}
1.003350935 & 1.010147334 & 1.00689557 & 1.00467214
\end{array}\right)^{\prime}
$$

Variance-Covariance Matrix:

$$
C=\left(\begin{array}{cccc}
3.23378 \cdot 10^{-6} & -8.52268 \cdot 10^{-7} & 3.22362 \cdot 10^{-6} & 2.11646 \cdot 10^{-6} \\
-8.52268 \cdot 10^{-7} & 0.004452642 & 0.00016297 & 0.001891651 \\
3.22362 \cdot 10^{-6} & 0.00016297 & 0.001756636 & 0.000153026 \\
2.11646 \cdot 10^{-6} & 0.001891651 & 0.000153026 & 0.002141459
\end{array}\right)
$$

The optimal portfolio problem ${ }^{2}$:

$$
\left\{\begin{array}{cc}
\min _{w} & w^{\prime} C w \\
\text { s.t. } & r^{\prime} w \geq r_{t} \\
& i^{\prime} w=1 \\
& w \geq 0
\end{array}\right.
$$

	Weights				
Return	3 yr-Tbill	NASDAQ	Dow	FTSE100	Variance
0.00335	1.000000001	0	0	0	$3.23378 \cdot 10^{-6}$
0.0035	0.970316711	0.013484625	0.016198664	0	$4.46546 \cdot 10^{-6}$
0.004	0.869534233	0.057387782	0.073077985	0	$2.81818 \cdot 10^{-5}$
0.005	0.667969164	0.145194147	0.186836689	0	0.000166112
0.006	0.466404127	0.233000497	0.300595376	0	0.000424707
0.007	0.26483909	0.320806847	0.414354063	0	0.000803964
0.008	0.063274053	0.408613198	0.52811275	0	0.001303886
0.009	0	0.647165988	0.352834013	0	0.002157985
0.01	0	0.95469136	0.04530864	0	0.004076001
0.011	0	1	0	0	0.004452642

[^0]Target return 0.005.
(c) What is the efficient portfolio given this return target? $w=$ (0.667969164, 0.145194147, 0.186836689, 0).
(d) Your client arrives January 11996 and has a five year horizon. What is the efficient portfolio given the data 1991-1995 given his target return? What is its performance given the realized returns 1996-2001?

The efficient portfolio is $w=(0.974267033,0.013550286,0.01218268,0)$. Dividing prices at the end of 2001 to prices at the beginning of 1996, we got the following vector of realized returns $r=$ (1.318624669, 2.331141075, 1.9303125, 1.583878584)'.

The realized return is $r \cdot w=1.339796554$.
(e) Your client arrives January 12001 and has a five year horizon. What is the portfolio you propose given the data 1996-2001? What is its performance given the realized returns 2002-2006?

The efficient portfolio is $w=(0.968810978,0.008916187,0.018801964,0.003470871)$.
The realized return is 1.158758724 .
(f) Would your client have been better off staying with his original weights (from question d)?

With the original weights the return would be 1.14160398 . So, he would be worse off.
(g) Your client arrives January 12006 and has a five year horizon. What is the portfolio you propose given the data 2001-2005? What is its performance given the realized returns 2006-2011?

The efficient portfolio is $w=(1,0,0,0)$.
The realized return is 1.147867382 .
Target return 0.01.
(h) Your client arrives January 11996 and has a five year horizon. What is the efficient portfolio given the data 1991-1995 if his target return is 0.01 per month? What is its performance given the realized returns 19962001?

The efficient portfolio is $w=(0.467895254,0.273249658,0.258855088,0)$. The realized return is 1.753632938 .
(i) Your client arrives January 12001 and has a five year horizon. What is the portfolio you propose given the data 1995-2001? What is its performance given the realized returns 2002-2006?

The efficient portfolio is $w=(0.45196639,0.154016552,0.328091879,0.065925178)$.
The realized return is 1.036588157 .
(j) Would your client have been better off staying with his original weights (from question b)?

If he stays with the original weights, the return is 1.143616796 . So, he would be better off.
(k) Your client arrives January 12006 and has a five year horizon. What is the portfolio you propose given the data 2001-2005? What is its performance given the realized returns 2006-2011?

The efficient portfolio is $w=(1,0,0,0)$.
The realized return is 1.153578165 .

[^0]: ${ }^{1}$ For the whole problem, we assume no short sales.
 ${ }^{2} i=(1,1,1,1,1){ }^{\prime}$

