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Abstract

We develop general conditions for rates of convergence and convergence in distribu-

tion of iterative procedures for estimating finite-dimensional parameters. An asymptotic

contraction mapping condition is the centerpiece of the theory. We illustrate some of the

results by deriving the limiting distribution of a two-stage iterative estimator of regression

parameters in a semiparametric binary response model. Simulation results illustrating the

computational benefits of the first-stage iterative estimator are also reported.
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1. Introduction

There is a substantial literature on convergence properties of various widely applied iterative

estimation procedures such as the expectation-maximization (EM) algorithm and its many de-

scendants (see, for example, McLachlan and Krishnan, 1997). Often in this literature, observed

data is conditioned on, and convergence refers to numerical convergence of sample iterates to

a sample fixed point. Similarly, a rate of convergence refers to how fast the sample iterates

converge to the sample fixed point as the number of iterations increases. While useful compu-

tationally, such information is not sufficient for doing asymptotic inference on the parameter of

interest, namely, the population parameter estimated by the sample fixed point. For example,

such information neither reveals the limiting distribution of the sample sequence nor implies

a rate of convergence to the parameter of interest, and gives no guidelines about the number

of iterations needed to achieve these results. The literature on finite-step estimation sheds

some light on these problems, but requires a starting value that converges to the parameter

of interest at a known rate (see, for example, Robinson 1988, Lehmann 1983 (Chapter 6.3),

or Bickel 1975). By contrast, most iterative estimation procedures do not start at consistent

starting values. Hence the need for theory enabling asymptotic inference about a parameter of

interest for general iterative estimation procedures. This paper provides such theory.

Specifically, this paper develops checkable conditions for consistency, rates of convergence,

and convergence in distribution of iterative procedures for estimating finite-dimensional pa-

rameters. The theory covers procedures like expectation-maximization (EM), Newton-Raphson

(NR), and iterative least squares (ILS). The key requirement is that the sample mapping gen-

erating the procedure and a population analogue be contraction mappings, asymptotically. We
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also isolate a convenient bias condition from which sensible stopping rules can be derived.

We illustrate the theory by establishing the limiting distribution of a two-stage iterative es-

timator of the regression parameters in a semiparametric binary response model. The first stage

is an ILS procedure. We apply the theory to show that this procedure consistently estimates the

regression parameters in the model. The second stage is a NR procedure that starts at the ILS

estimates and is based on the criterion function of the Klein and Spady (1993) estimator that

achieves the semiparametric efficiency bound for this model established by Chamberlain (1986)

and Cosslett (1987). We use the theory to show that the two-stage procedure also achieves this

bound. While we use this application to illustrate the asymptotic theory, the ILS estimator is

interesting in its own right because of the substantial computational advantages it can provide,

particularly in applications with many observations and many regressors. To illustrate these

benefits, we provide a small simulation study comparing the ILS estimator to the efficient es-

timator of Klein and Spady (1993). We also briefly discuss extensions of the ILS procedure to

semiparametric censored regression models.

Simultaneously and independently of this work, Pastorello, Patilea, and Renault (2003, Sec-

tions 1-4) develop a similar theory of iterative estimation and consider applications to structural

nonadaptive econometric models with an emphasis on financial market models. The theory de-

veloped in this paper covers all of their main applications. However, their theory requires a

continuity condition (Pastorello et al., 2003, Assumption 1a p. 452) that limits the applicability

of their results. For example, we show that this continuity condition does not hold for the ILS

estimator developed in Section 3 for the semiparametric binary response model. Nor do these

authors provide guidelines for stopping rules.

The rest of the paper is organized as follows. In Section 2, we develop conditions for
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consistency, rates of convergence, and convergence in distribution of general iterative estimation

procedures. We also provide guidelines for developing stopping rules for these procedures. In

Section 3, we apply the theory to the iterative estimator for the semiparametric binary response

model described above. Section 4 presents the simulation study. Section 5 summarizes. Proofs

and other technical supporting material are provided in an appendix.

2. Theory

This section develops general conditions for rates of convergence and convergence in dis-

tribution of iterative procedures for estimating finite-dimensional parameters. We begin by

developing some notation.

Let (Ω,A, IP ) denote a probability space. That is, Ω is a sample space, A is a σ-field of

subsets of Ω, and IP is a probability measure on A. For ω ∈ Ω, let Z1(ω, β0), . . . , Zn(ω, β0)

denote a sample of size n from IP , where β0 denotes a fixed parameter of interest in IRk, k ≥ 1.

Let M(φ) denote a mapping from IRk to IRk with fixed point β0. That is, M(β0) = β0.

Population analogues of sample mappings generating common iterative estimators satisfy this

fixed point condition. For example, a population analogue of the sample mapping defining an

EM procedure has the form

M(φ) = argmax
β

IEQn(β | φ)

where Qn(β | φ) is the conditional expectation of the complete data log-likelihood function

given the observed data and φ. The outer expectation is over the distribution of the observed

data. It follows that IEQn(β | β0) is the expected value of the complete data log-likelihood

function, which is maximized at β0. That is, M(β0) = β0. A population analogue of a sample
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mapping defining a NR procedure has the form

M(φ) = φ − [H(φ)]−1G(φ)

where G(φ) is a population analogue of the gradient of the sample objective function and

H(φ) is a population analogue of the corresponding sample hessian. Under general conditions,

G(β0) = 0 and so M(β0) = β0.

We show in Section 3 that the fixed point condition just described is also satisfied by a

population analogue of a semiparametric ILS mapping. However, this population mapping

depends on both the sample size n and the ω that generated the sample from IP . In order to

cover applications like this, from now on, we write Mn(φ) for a generic population mapping,

letting the subscript n suggest the possible dependence of this mapping on both n and ω. The

fixed point condition, then, becomes Mn(β0) = β0 for all n and ω. Write M̂n(φ) for a sample

analogue of Mn(φ). Let β0
n ≡ β̂0

n denote a starting point in IRk. This starting point may depend

on n and ω. For i ≥ 1, define βi
n = Mn(βi−1

n ) and β̂i
n = M̂n(β̂i−1

n ). We call βi
n a population

iterate. We call β̂i
n a sample iterate as well as an iterative estimator of β0.

Contraction mappings play a central role in establishing the limiting behavior of β̂i
n. We

now introduce the notion of an asymptotic contraction mapping.

Definition. For each n ≥ 1 and ω ∈ Ω, let Kω
n (·) be a function defined on a set X where

(X , d) is a metric space. The collection {Kω
n (·) : n ≥ 1, ω ∈ Ω} is an asymptotic contraction

mapping (denoted ACM) on (X , d) if there exist a constant c in [0, 1) which does not depend

on n or ω, and sets {An} with each An ⊆ Ω and IPAn → 1 as n → ∞, such that for each

ω ∈ An, Kω
n (·) maps X to itself and for all x, y ∈ X ,

d(Kω
n (x),Kω

n (y)) ≤ c d(x, y).
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2

The ACM property is a property of the collection of functions {Kω
n (·) : n ≥ 1, ω ∈ Ω}. For

ease of notation, we write {Kω
n (·)} for this collection.

If {Kω
n (·)} is an ACM on (X , d) and ω ∈ An, where An is one of the ”good” sets described

in the definition, then Kω
n (·) is a contraction mapping on (X , d). Then, by the Banach Fixed

Point Theorem (Aliprantis and Border, 1994, pp.88–89), Kω
n (·) has a unique fixed point x̂n in

X , and any sequence defined by x̂i
n = Kω

n (x̂i−1
n ) where x̂0

n ∈ X converges to x̂n as i → ∞. Note

that the iterates and the fixed point can depend on n and ω. Also, note that {Kω
n (·)} can be

an ACM without Kω
n (·) being a contraction mapping for each n and ω.

To establish the limiting distribution of β̂i
n we require that both {Mn(φ)} and {M̂n(φ)} be

ACMs on (B0, Ek). Here Ek is the Euclidean metric on IRk and B0 is the closed ball centered

at β0 of radius |β0
n − β0|. If {Mn(φ)} is an ACM on (B0, Ek), then, for each ω ∈ An (see

definition), β0 is the unique fixed point of Mn(φ) on B0. If {M̂n(φ)} is an ACM on (B0, Ek),

then, for each ω ∈ An (not necessarily the same An as for Mn(φ)), M̂n(φ) has a unique fixed

point on B0, which we denote β̂n. Unlike β0, β̂n typically depends on both n and ω.

Theorem 1 gives conditions for rates of convergence of β̂i
n. Let Z+ be the positive integers.

Theorem 1: Let i(n) be a function from Z+ to Z+. Fix δ > 0. If

(i) {Mn(φ)} is an ACM on (B0, Ek)

(ii) nδ|βi(n)
n − β0| = Op(1) as n → ∞

(iii) nδ supφ∈B0
|M̂n(φ) − Mn(φ)| = Op(1) as n → ∞

then nδ|β̂i(n)
n − β0| = Op(1) as n → ∞.
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Remark 1. In order to apply Theorem 1, one must choose i(n) to satisfy condition (ii). The

choice depends on the order of convergence of the iterative procedure. Let β i, i ≥ 1, and β be

points in IRk. The sequence {βi}∞i=1 converges to β of order σ ≥ 1 if there exists a constant

κ > 0 such that for i ≥ 1, |ei|/|ei−1|σ ≤ κ where ei = βi−β. (cf. Burden et al., 1981, p.45.) The

leading special cases are σ = 1 (linear convergence) and σ = 2 (quadratic convergence). For

example, the population sequence for the semiparametric ILS procedure analyzed in Section 3

exhibits linear convergence to its fixed point, while the population and sample sequences for

the semiparametric NR procedure analyzed in Section 3 exhibit quadratic convergence to their

respective fixed points.

First, we choose i(n) to satisfy condition (ii) when σ = 1. In this case, the constant

κ can be taken to equal the modulus of contraction c guaranteed by condition (i). Assume

supn |β0
n − β0| < ∞. A simple recursive calculation shows that nδ|βi(n)

n − β0| ≤ |β0
n − β0| for

each n ≥ 1 (a stronger condition than condition (ii)) provided i(n) ≥ −δ lnn/ ln c. This bound

is sharp and can be used to develop a stopping rule for the iterative sequence. For instance,

if σ = 1, δ = 1/2, n = 5000, and c ≤ .9, then the stronger condition just stated is satisfied

provided i(5000) ≥ 41. Alternatively, one can estimate c with the maximum of the ratios

|M̂(β̂i
n)− M̂(β̂i−1

n )|/|β̂i
n − β̂i−1

n | = |β̂i+1
n − β̂i

n|/|β̂i
n − β̂i−1

n | over a small number of ratios and for

different starting values for the sequence.

Next, we choose i(n) to satisfy condition (ii) when σ > 1. Define α(σ) = κ
1

σ−1 |β0
n − β0|

and assume α(σ) < 1. A recursive calculation shows that nδ|βi(n)
n − β0| ≤ |β0

n − β0| for n ≥ 1

(again, a stronger condition than condition (ii)) provided i(n) ≥ [lnσ]−1 ln(−δ lnn/ lnα(σ)).

To illustrate, for a smooth NR procedure, σ = 2 and the constant κ can be taken to equal

2Ck with 2C an upper bound on the absolute value of each of the second order mixed partial
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derivatives of each of the k components of Mn (cf. Burden et al., 1981, p.47).1 The constant

α(2) can be chosen strictly less than unity by starting the procedure close enough to β0. If

σ = 2, δ = 1/2, n = 5000, and α(2) ≤ .9, then the stronger condition stated above is satisfied

provided i(5000) ≥ 6.

Finally, we note that condition (ii) does not require that i(n) → ∞ as n → ∞. As a simple

example, consider sampling iid observations from a normal distribution with unknown mean β0

and known variance, and estimating β0 using an NR procedure. Then it is trivial to show that

no matter what the starting value β0
n, β1

n = β0. That is, condition (ii) is satisfied for all δ > 0

with i(n) = 1 for all n.

Remark 2. Many iterative procedures converge at rate
√

n, corresponding to δ = 1/2

in Theorem 1. However, this need not be the case. For example, consider estimating the

regression parameters in a semiparametric binary response model using a NR procedure based

on the smoothed maximum score estimator of Horowitz (1992). Depending on the smoothness

of the data distribution, under the conditions of Theorem 1, this NR procedure will converge

at rate nδ, for some δ ∈ [1/3, 1/2).

The next result gives conditions for consistency without a rate of convergence.

Theorem 2: Let i(n) be a function from Z+ to Z+. If

(i) {Mn(φ)} is an ACM on (B0, Ek)

(ii) |βi(n)
n − β0| = op(1) as n → ∞

(iii) supφ∈B0
|M̂n(φ) − Mn(φ)| = op(1) as n → ∞
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then |β̂i(n)
n − β0| = op(1) as n → ∞.

Remark 3. In Theorem 2, if condition (i) holds, then condition (ii) holds if i(n) → ∞ as

n → ∞. No minimum rate of growth is required for i(n) because the bias term in (ii) is not

inflated by a factor of nδ as it is in Theorem 1.

Our next objective is to develop conditions for convergence in distribution of β̂i
n. To do so,

we require that {M̂n(φ)} be an ACM on (B0, Ek).

Assume that the first partial derivatives of the components of M̂n(φ) and Mn(φ) exist.

Let ∇φ denote the differential operator (∂/∂φ1, . . . , ∂/∂φk). Write Vn(φ) for the k × k matrix

∇φMn(φ) and V̂n(φ) for the k × k matrix ∇φM̂n(φ). For a k × k matrix A = (aij), let ‖A‖

denote the matrix norm [
∑

ij a2
ij ]

1/2.

Lemma 3. Suppose Vn(φ) and V̂n(φ) exist. If

(i) {Mn(φ)} is an ACM on (B0, Ek)

(ii) supφ∈B0
|M̂n(φ) − Mn(φ)| = op(1) as n → ∞

(iii) supφ∈B0
‖V̂n(φ) − Vn(φ)‖ = op(1) as n → ∞

then {M̂n(φ)} is an ACM on (B0, Ek).

We are now in a position to establish a convergence in distribution result for β̂i
n. The limiting

distribution depends on the limiting behavior of the infeasible estimator M̂n(β0). Recall that

if {M̂n(φ)} is an ACM on (B0, Ek), then, for ω ∈ An, M̂n(φ) has a unique fixed point on B0,

denoted β̂n. Assume that the probability limit of Vn(φ) exists and let V (φ) denote this quantity.

In what follows, we use the symbol =⇒ to denote convergence in distribution.
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Theorem 4: Let i(n) be a function from Z+ to Z+, and let {εn} denote an arbitrary

sequence of nonnegative real numbers converging to zero as n → ∞. For δ > 0, if

(i) |β̂i(n)
n − β0| = op(1) as n → ∞

(ii) {M̂n(φ)} is an ACM on (B0, Ek)

(iii) nδ|β̂i(n)
n − β̂n| = op(1) as n → ∞

(iv) For some δ > 0, nδ(M̂n(β0) − β0) =⇒ Z as n → ∞

(v) sup|φ−β0|≤εn
‖V̂n(φ) − V (φ)‖ = op(1) as n → ∞

(vi) V (φ) is continuous in an open neighborhood of β0

then nδ(β̂
i(n)
n − β0) =⇒ DZ as n → ∞, where D = [Ik − V (β0)]

−1.

Remark 4. Theorem 2 provides checkable conditions that imply condition (i). Lemma 3

provides checkable conditions that imply condition (ii). Remark 1 concerning the choice of i(n)

can be adapted to establish condition (iii). For example, in the application in Section 3, the

sample sequence of the semiparametric NR procedure is started at a consistent estimator β̂0

and exhibits quadratic convergence to its sample fixed point. Replacing Mn with M̂n and β0
n

with β̂0 in Remark 1 and choosing i(n) ≥ [ln 2]−1 ln(−δ lnn/ ln α(2)) is sufficient to establish

condition (iii). Finally, note that procedures exhibiting linear convergence satisfy V (β0) 6= 0,

whereas procedures exhibiting quadratic convergence (such as NR procedures) satisfy V (β0) = 0

(Burden et. al. 1981, p.47-48). Thus, for NR procedures like the one presented in Section 3, D

is the identity matrix and so nδ(β̂
i(n)
n − β0) =⇒ Z as n → ∞.

3. An Illustration
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In this section, we illustrate the theory developed in Section 2 by establishing the limiting

behavior of a two-stage iterative estimator of regression parameters in a semiparametric binary

response model. The first stage estimator is an ILS estimator. We establish consistency of this

estimator by developing primitive conditions implying the conditions of Theorem 2 in Section 2.2

We then apply Theorem 4 in Section 2 to establish the limiting distribution of an NR estimator

started at the ILS estimates. The NR estimator is based on the criterion function of the Klein

and Spady (1993) estimator, which achieves the semiparametric efficiency bound for this model

established by Chamberlain (1986) and Cosslett (1987). We show that this two-stage estimator

also achieves this bound.

Consider the binary response model Y = 1{Y ∗ ≥ 0} where the latent variable Y ∗ = X ′β0−u,

X = (W1, . . . ,Wk,Wk+1)
′, β0 = (β01, . . . , β0k, β0,k+1)

′, and u is an error term with unknown

distribution. Since the distribution of u is not known in this model, restrictions are needed to

identify the regression parameters. We assume that Wk+1 is nonconstant and normalize β0,k+1

to unity. Rather than introduce new notation, we reinterpret β0 as the first k components of

the true parameter vector divided by β0,k+1, and u as the true error divided by β0,k+1. Also,

for each φ in IRk, we write X ′φ for W1φ1 + · · · + Wkφk + Wk+1. In addition, we take W1 = 1.

That is, W1 is the regressor corresponding to the intercept term in the model.

Let (Y1, X1), . . . , (Yn, Xn) denote a sample of independent observations from the model just

defined, and let Xn denote the n × k matrix comprised of the first k components of each Xj ,

j = 1, . . . , n. Prewhiten Xn so that X′
nXn = nIk.

Next, let F and f denote the unknown cumulative distribution function and density function

of u. Fix t in IR and φ in IRk. Let F (t, φ) = IP{Y = 1 | X ′φ = t}. Assume that ∇tF (t, φ)
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exists and write f(t, φ) = ∇tF (t, φ). Note that F (t, β0) = F (t) and f(t, β0) = f(t). Define

ν(t, φ) =

∫ t

−∞
u f(u, φ) du/F (t, φ) = t −

∫ t

−∞
F (u, φ) du/F (t, φ)

π(t, φ) =

∫ ∞

t
u f(u, φ) du/[1 − F (t, φ)] = t +

∫ ∞

t
[1 − F (u, φ)] du/[1 − F (t, φ)] .

The second representations for ν(t, φ) and π(t, φ) follow from integration by parts arguments.

Note that ν(t, β0) = IE[u | u ≤ t] and π(t, β0) = IE[u | u > t]. Write un(φ) for (u1(φ), . . . , un(φ))′

with uj(φ) = F (X ′
jβ0)ν(X ′

jφ, φ)+(1−F (X ′
jβ0))π(X ′

jφ, φ). Write Yj(φ) for X ′
jφ−uj(φ). Define

the population ILS mapping

Mn(φ) = argmin
β

n
∑

j=1

(Yj(φ) − X ′
jβ)2 = φ − n−1X′

nun(φ) .

Note that for all j, uj(β0) = IEu. Deduce from this and prewhitening that Mn(β0) = β0. That

is, β0 is a fixed point of Mn(φ).

We now construct a sample analogue of Mn(φ) by developing numerical integral approxi-

mations of ν(X ′
jφ, φ) and π(X ′

jφ, φ) using nearest neighbor estimators of the F (X ′
jφ, φ)’s. Fix

α > 1 and let {cn} denote a sequence of nonnegative real numbers satisfying cn → ∞ as

n → ∞. For t ∈ IR, define the trimming functions τn(t) = 1{|t| ≤ cn} and σn(t) = 1{|t| ≤ cα
n}.

Note that τn(·) trims more severely than σn(·). These functions help control tail behavior.

Relabel observation numbers so that index values are ordered from smallest to largest. That

is, let X ′
1φ ≤ · · · ≤ X ′

nφ. Let X ′
0φ = X ′

1φ, X ′
n+1φ = X ′

nφ, and ∆(X ′
iφ) = X ′

iφ − X ′
i−1φ,

i = 1, . . . , n + 1. For j = 1, . . . , n, define

ν̂(X ′
jφ, φ) = X ′

jφ −
j

∑

i=1

σn(X ′
iφ)F̂ (X ′

iφ, φ)∆(X ′
iφ)/F̂ (X ′

jφ, φ)

π̂(X ′
jφ, φ) = X ′

jφ +
n

∑

i=j

σn(X ′
iφ)[1 − F̂ (X ′

iφ, φ)]∆(X ′
i+1φ)/[1 − F̂ (X ′

jφ, φ)] .
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In the expressions above, F̂ (X ′
iφ, φ) is a nearest neighbor estimator of F (X ′

iφ, φ). Let kn be

a positive integer. If kn < i ≤ n − kn, then F̂ (X ′
iφ, φ) is the arithmetic average of the 2kn + 1

binary values Yi−kn
, . . . , Yi+kn

. These are symmetric nearest neighbor estimators. If i ≤ kn,

then F̂ (X ′
iφ, φ) is the average of the kn + 1 binary values Yi, . . . , Yi+kn

. If i > n − kn, then

F̂ (X ′
iφ, φ) is the average of the kn + 1 binary values Yi−kn

, . . . , Yi.

Write ûn(φ) for (û1(φ), . . . , ûn(φ))′ with ûj(φ) =
[

Yj ν̂(X ′
jφ, φ) + (1 − Yj)π̂(X ′

jφ, φ)
]

τn(X ′
jφ).

Write Ŷj(φ) for X ′
jφ − ûj(φ).3 Define the sample ILS mapping

M̂n(φ) = argmin
β

n
∑

j=1

(Ŷj(φ) − X ′
jβ)2 = φ − n−1X′

nûn(φ) .

Let β̂0
n denote an arbitrary starting value and for each i ≥ 1, define β̂i

n = M̂n(β̂i−1
n ). We call

β̂i
n a semiparametric ILS estimator of β0.

In order to prove consistency of the ILS estimator β̂i
n, we see from Theorem 2 in Section 2

that we must show that Mn(φ) is an asymptotic contraction mapping and that M̂n(φ) converges

uniformly to Mn(φ). We now state and discuss primitive conditions sufficient to imply these

high-level conditions.

Let N denote the closure of an open convex neighborhood of β0. Write Su for the support of

u and Sφ for the support of X ′φ. Write g(t, φ) for the density of X ′φ evaluated at t. Throughout,

we will maintain the following assumptions for t ∈ IR and φ ∈ N .

A0. (Yj , Xj)
n
j=1 are iid observations from the model Y = 1{u < X ′β0} described above.

A1. Su = IR and u is log-concave and independent of X.

A2. Sφ = IR, IE|X|2 < ∞, Xn has full rank, and X′
nXn = nIk.

A3. kn ∝ n3/4.

A4. cn → ∞ as n → ∞ and cn � nδ for all δ > 0.
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A5. For all δ > 0, supt,φ σn(t)/g(t, φ) � nδ.

A6. For all δ > 0, supt,φ σn(t)/F (t, φ) � nδ and supt,φ σn(t)/[1 − F (t, φ)] � nδ.

A7. F (t, φ) ↘ 0 as t → −∞ and supφ

∫ −cα
n

−∞ F (u, φ)du/F (−cn, φ) → 0 as n → ∞.

A8. F (t, φ) ↗ 1 as t → ∞ and supφ

∫ ∞
cα
n
[1 − F (u, φ)]du/[1 − F (cn, φ)] → 0 as n → ∞.

A9. supt,φ g(t, φ) < ∞, supt,φ |∇tg(t, φ)| < ∞, and supt,φ f(t, φ) < ∞.

A10. g(t, φ) is continuous in t and φ.

A11. ν(X ′φ, φ), π(X ′φ, φ), and the components of ∇φν(X ′φ, φ) and ∇φπ(X ′φ, φ) have square

integrable envelopes and satisfy a Lipschitz condition in φ.

Assumption A0 describes the data and the model.

A1 and A2 are assumptions about u and X and their relationship to each other. Note that

we assume that u is log-concave. This is a large class of distributions, and includes normal,

logistic, extreme-value, Laplacian, Gamma, Beta, and triangular families, and many others as

well. However, log-concavity is only a sufficient condition. As we will demonstrate in the next

section, the ILS procedure can work well even when this assumption does not hold, as when u

is log-convex. It is not necessary that Su = Sφ = IR. We make these assumptions for ease of

exposition and because the infinite support case is a leading special case. The prewhitening in

A2 is used to establish the local contraction mapping property. In general, prewhitening would

not be effective in this regard if the index were not linear.

A3 defines the number of neighbors up to scale. From the proofs of Lemma 1A and

Lemma 2A in the appendix, we see that n1/2 � kn � n is sufficient. However, we choose

n3/4 since this rate optimally balances convergence rates of stochastic and bias terms in the

nearest neighbor estimators (see proof of Lemma 3A in the appendix). The constant of pro-
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portionality could be any consistent estimate of a measure of spread in the X ′
iφ’s.

Assumptions A4 through A8 define trimming and tail conditions. The interval [−cn, cn]

defines the set of t values for which numerical integral estimates of ν(t, φ) and π(t, φ) are

computed, while the interval [−cα
n, cα

n] defines the set of t values at which nearest neighbor

nonparametric regression estimates of F (t, φ) are computed. These latter estimates are ratios

with estimates of g(t, φ) in denominators and appear in denominators of estimates of ν(t, φ)

and π(t, φ). To give an example of what we have in mind for A4 through A8, suppose cn is

proportional to
√

ln lnn. Then simple calculations show that A5 is satisfied provided the tails

of X ′φ decrease no faster than normal tails. If, in addition, α > (1 + δ)/δ for δ > 0, then the

conditions in A6 through A8 are satisfied at β0 provided the tails of u decrease no faster than

normal tails and no slower than |t|−(2+δ) as |t| → ∞.

Assumptions A9 through A11 are conditions useful for bounding remainder terms in Taylor

expansions or in proving uniform convergence results.

Lemma 5: Suppose A0, A1, A2, and A11 hold. Then there exists an open ball centered at

β0 with closure B0 ⊆ N such that {Mn(φ)} is an ACM on (B0, Ek).

The following result is based on Lemmas 1A, 2A, and 3A, which extend some results of

Ichimura (1997) relating kn, the number of nearest neighbors, to nearest neighbor window

widths. It also uses Lemma 4A, a result on maximum sample spacings, to show that numerical

integral approximations are close to their estimands.

Lemma 6: A0 through A11 imply supφ∈N

∣

∣

∣M̂n(φ) − Mn(φ)
∣

∣

∣ = op(1) as n → ∞.

The next result follows from Lemma 5, Lemma 6, and Theorem 2.
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Theorem 7. Assume A0 through A11 hold and β̂0
n ∈ B0 from Lemma 5. If i(n) → ∞ as

n → ∞, then |β̂i(n)
n − β0| = op(1) as n → ∞.

Remark 5. The starting value, β̂0
n, for the ILS procedure may or may not be an element of B0.

Thus, successful implementation of the procedure may require good starting values. Standard

parametric estimates, such as probit or logit estimates, can be tried. For our simulations,

we used OLS estimates. While these were generally poor estimates of β0, they proved to be

good enough starting values for the ILS procedure. Also, note that an informal check of the

contraction mapping condition can always be made: given a sequence of ILS iterates β̂0
n, β̂1

n, . . .,

compute the ratios |M̂n(β̂i
n) − M̂n(β̂i−1

n )|/|β̂i
n − β̂i−1

n | = |β̂i+1
n − β̂i

n|/|β̂i
n − β̂i−1

n |, i ≥ 1. Ratios

less than unity give informal support to the contraction mapping assumption.

We now develop the efficient estimator. We do so by starting from the consistent ILS

estimates and taking Newton-Raphson steps using the criterion function for the efficient Klein

and Spady (1993) estimator. Let d = k − 1 and reinterpret β0 as the last d components of the

true parameter vector and write β̂ILS as the last d components of the ILS estimator. In short,

we throw out the intercept term. We do this because the Klein and Spady estimator does not

estimate the intercept. Let φ denote an element of IRd. Define the sample NR mapping

M̂n(φ) = φ −
[

Ĥn(φ)
]−1

Ĝn(φ)

where Ĝn(φ) is the gradient and Ĥn(φ) the Hessian or outer product gradient of the criterion

function L̂n(φ) of the efficient Klein and Spady estimator as defined in Sherman (1994a). This

function has the form

L̂n(φ) = n−1
n

∑

i=1

[

Yi ln F̂ (X ′
iφ, φ) + (1 − Yi) ln

[

1 − F̂ (X ′
iφ, φ)

]]

τn(Xi)

18



where F̂ (X ′
iφ, φ) is a nonparametric regression estimator of F (X ′

iφ, φ) and τn(x) = {|x| ≤ cn}.

Define β̂0
n = β̂ILS and for i ≥ 1, define β̂i

n = M̂n(β̂i−1
n ). We call β̂i

n a semiparametric NR

estimator of β0.

Define the population NR mapping

M(φ) = φ − [H(β0)]
−1 G(φ)

where G(φ) = IEG̃n(φ) and H(φ) = IEH̃n(φ) with G̃n(φ) the gradient and H̃n(φ) the Hessian

or outer product gradient of the function L̃n(φ) where

L̃n(φ) = n−1
n

∑

i=1

[

Yi lnF (X ′
iφ, φ) + (1 − Yi) ln

[

1 − F (X ′
iφ, φ)

]]

.

Note that M(φ) does not depend on n or ω, and M(β0) = β0.

Define V̂n(φ) = ∇φM̂n(φ) and V (φ) = ∇φM(φ) and note that V (β0) = 0d, the d×d zero ma-

trix. Assumptions in Sherman (1994a) imply that H(φ) is continuous in a neighborhood of β0.

It follows that V (φ) is continuous in a neighborhood of β0. Deduce that there exists an open ball

centered at β0 with closure B0 such that M(φ) is a contraction mapping on (B0, Ed). Arguments

in Sherman (1994a) can be adapted to show that as n → ∞, (i) supφ∈B0
|M̂n(φ)−M(φ)| = op(1),

(ii) supφ∈B0
|V̂n(φ) − V (φ)| = op(1), and (iii)

√
n(M̂n(β0) − β0) =⇒ N(0,−[H(β0)]

−1). Deduce

from these facts, Lemma 3, and Theorem 4 that for i(n) ≥ [ln 2]−1 ln(−.5 ln n/ lnκ) for κ ∈ (0, 1)

(see Remark 1),
√

n(β̂
i(n)
n −β0) converges in distribution to a N(0,−[H(β0)]

−1) random variable

as n → ∞. This is the limiting distribution of the efficient Klein and Spady (1993) estimator.

Finally, we note that the ILS procedure developed in this section can be easily extended to

semiparametric censored regression models. For example, if the latent variable Y ∗ = X ′β0 − u

and we observe (Y,X) where Y = Y ∗1{Y ∗ ≥ 0}, then an ILS estimator of β0 can be defined
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exactly as in this section after setting Ŷj(φ) = Yj1{Yj > 0} + [X ′
jφ − π̂(X ′

jφ, φ)]1{Yj = 0}.

Similar extensions can cover other censoring schemes such as those that involve top-coding.

4. Simulations

In this section, we provide a small simulation study comparing the speed and performance of

the ILS procedure developed in Section 3 to the speed and performance of the efficient estimator

of Klein and Spady (1993) for the semiparametric binary response model.

The model we use in the simulations has the form Y = 1{u ≤ X ′β0} where the regressor

vector X = (W1, . . . ,W6,W7)
′ and

X ′β0 = β01W1 + β02W2 + β03W3 + β04W4 + β05W5 + β06W6 + β07W7

with β01 = 0, β02 = −2, β03 = −1, β04 = −0.5, β05 = 0.5, β06 = 2, and β07 = 1. In this

model, W1 = 1 and W2 through W7 are independent standard exponential random variables.

In addition, u is independent of X and has either a χ2(1) or a χ2(3) distribution standardized

to have mean zero and variance equal to the variance of X ′β0. Thus, the signal to noise ratio

in the simulations is unity. We normalize on β07 and report estimates of the slope coefficients

β02, β03, β04, β05, β06.
4 Note that a χ2(1) distribution is log-convex, whereas a χ2(3) distribution

is log-concave. Even though the χ2(1) distribution violates log-concavity, we will show that the

ILS procedure still works well in this setting.

For the ILS procedure, we choose the number of neighbors kn by a “leave one out” method

of least-squares cross-validation calibrated on one of the models defined above with n = 10000.

This and A3 produce the rule kn ≈ .14n3/4, which we use in all the simulations. We do no

trimming. Also, we use OLS starting values and say that the procedure has converged when the
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maximum relative difference between the components of successive iterates is less than 10−4 in

absolute value. If this convergence criterion is not met after 1000 iterations, we stop and use

the last five components of the 1000th iterate as an estimate of (β02, . . . , β06).

We compute the Klein and Spady (KS) criterion function using a program written in the

GAUSS language by Roger Klein. This program likewise does no trimming. We compute the

KS estimator using the MAXLIK optimization routine with PROBIT starting values and say

that the procedure has converged when the maximum component of the gradient is less than

10−4 in absolute value. If this criterion is not met after 50 iterations, we stop and use the 50th

iterate as an estimate of (β02, . . . , β06). Typically, the components of the 50th iterate are not

changing in the first four decimal places.

Results for both the ILS and KS estimators are based on the same simulation data sets.

All simulations are performed using GAUSS 3.5 for Windows on a Pentium-III PC with 800

Megahertz of RAM.

Table 1 presents means and root-mean squared error (RMSE) statistics for the ILS and KS

estimators, based on 100 simulations. Results for the PROBIT and OLS estimators are also

provided as points of comparison. For both error distributions, when n = 1000, both ILS and

KS do well in terms of bias. KS slightly outperforms ILS in terms of RMSE for χ2(1) errors; the

two estimators are close in RMSE when errors are χ2(3). When n = 5000, the estimators are

almost indistinguishable in terms of both bias and RMSE. Note that both absolute and relative

bias in PROBIT and OLS estimates increase as the parameter values increase in magnitude,

the effect being more pronounced for the more skewed χ2(1) distribution.
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Table 1: Means and RMSE of Coefficient Estimates∗

β02 = −2 β03 = −1 β04 = −.5 β05 = .5 β06 = 2

u ∼ χ2(1), n = 1000

ILS (kn = 25) -1.97 (.31) -1.01 (.19) -.52 (.17) .52 (.15) 2.03 (.29)
KS -1.91 (.24) -.98 (.14) -.51 (.11) .51 (.10) 2.03 (.20)
PROBIT -1.62 (.66) -.87 (.22) -.45 (.13) .50 (.13) 2.06 (.28)
OLS -1.37 (.66) -.82 (.22) -.45 (.13) .52 (.13) 1.83 (.28)

u ∼ χ2(3), n = 1000

ILS (kn = 25) -2.04 (.33) -1.01 (.23) -.50 (.18) .51 (.16) 2.05 (.28)
KS -1.99 (.32) -1.00 (.23) -.49 (.20) .51 (.15) 2.06 (.26)
PROBIT -1.75 (.53) -.90 (.21) -.46 (.17) .50 (.15) 2.09 (.28)
OLS -1.53 (.53) -.88 (.21) -.46 (.17) .52 (.15) 1.88 (.28)

u ∼ χ2(3), n = 5000

ILS (kn = 85) -2.01 (.14) -.99 (.08) -.49 (.06) .50 (.07) 2.01 (.12)
KS -1.97 (.14) -.99 (.09) -.50 (.07) .49 (.07) 2.02 (.11)
PROBIT -1.71 (.52) -.88 (.16) -.45 (.07) .48 (.07) 2.05 (.20)
OLS -1.49 (.52) -.85 (.16) -.45 (.07) .50 (.07) 1.83 (.20)

∗Results based on 100 simulations.

Table 2 presents computation statistics that allow timing and convergence comparisons of

the ILS and KS estimators. These statistics correspond to the results presented in Table 1. The

first column gives the median number of iterations per simulation, the second column gives the

approximate time per iteration, and the third column gives the percentage of simulations where

the respective convergence criteria were satisfied. We see that for both error distributions,

when n = 1000, most of the ILS simulations do not satisfy the ILS criterion. However, we

see from Table 1 that this does not imply that the ILS iterates are diverging. Rather, the

iterates oscillate between vectors whose components differ in the third or fourth decimal places.

We suspect that this oscillation is due to lack of smoothness in β̂(φ) when n = 1000. Note
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that when n = 5000, the median number of ILS iterations decreases to 175 while nearly all

the simulations satisfy the ILS criterion. The KS estimator, on the other hand, satisfies its

convergence criterion most of the time, though contrary to our expectations, the percentage

decreases as skewness decreases and as sample size increases.

A notable aspect of Table 2 is the timing comparison. ILS, on average, requires only about

20 seconds to estimate 6 parameters (5 slope coefficients and an intercept) when n = 5000.

KS, on average, requires well over 2 hours to estimate 5 parameters when n = 5000. The ILS

procedure is fast because (i) only O(n) calculations are needed to compute the nearest neighbor

estimators of all the F (X ′
jφ, φ)’s and (ii) computation time for a least squares calculation is

nearly constant as a function of k, the number of estimated parameters. By contrast, computing

the KS criterion function, which involves local smoothing, is an O(n2hn) calculation where hn is

the deterministic bandwidth for the kernel regression estimators of the F (X ′
jφ, φ)’s. In addition,

computation time can increase as a quadratic in k, since steps can require the computation of

numerical gradients and hessians of the criterion function.
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Table 2: Computation Statistics∗

Median # of Iterations/Simulation Time/Iteration Criterion Satisfied

u ∼ χ2(1), n = 1000

ILS (kn = 25) 1000 .02 seconds 3%
KS 22 40 seconds 94%

u ∼ χ2(3), n = 1000

ILS (kn = 25) 1000 .02 seconds 1%
KS 22 40 seconds 83%

u ∼ χ2(3), n = 5000

ILS (kn = 85) 175 .11 seconds 97%
KS 27 6 minutes 77%

∗Results based on 100 simulations.

5. Summary

This paper develops general conditions for rates of convergence and convergence in distri-

bution of iterative procedures for estimating finite-dimensional parameters. The theory covers

iterative estimation schemes like expectation-maximization (EM), Newton-Raphson (NR), and

iterative least squares (ILS) procedures. The theory requires a combination of asymptotic con-

traction mapping conditions and uniform convergence conditions, with convergence in distribu-

tion requiring an additional convergence in distribution result for a certain infeasible estimator.

A bias condition is isolated that can be used to derive sensible stopping rules.

We illustrate the theory by establishing the limiting distribution of a two-stage iterative

estimator of regression parameters in a semiparametric binary response model. The first stage

is a consistent ILS procedure. The second stage is a NR procedure that is started at the ILS
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estimates and is based on the criterion function of the efficient Klein and Spady (1993) esti-

mator. The ILS/NR procedure achieves the semiparametric efficiency bound for this model

established by Chamberlain (1986) and Cosslett (1987). Simulations show that the ILS pro-

cedure is very fast to compute even for models with many observations and many estimable

parameters. In addition, the ILS estimator is comparable to the Klein and Spady estimator

in terms of root-mean-squared error in the given simulations. The ILS procedure developed

for the semiparametric binary response model easily extends to cover various semiparametric

censored regression models.

NOTES

1. Recall that Mn(φ) = (M 1
n(φ), . . . ,Mk

n(φ))′ where each M j
n(φ) is a real-valued funtion of

φ = (φ1, . . . , φk)
′. An NR procedure is smooth if, for each j, the k × k matrix of second order

mixed partial derivatives of M j
n(φ) exists.

2. Wang and Zhou (1995) appear to have been the first to propose a semiparametric

ILS estimator for binary response models. They use isotonic regression to estimate a certain

conditional expectation. They do not prove consistency. The theory developed in this paper

covers the ILS estimator of Wang and Zhou. However, the contraction mapping condition

and uniform convergence condition of Theorem 1 are harder to prove due to the difficulty in

analyzing the isotonic regression component of their estimator.

3. Note that Ŷj(φ) is a function of the nearest neighbor estimators F̂ (X ′
iφ, φ), which are

step functions. This implies that Ŷj(φ) (and, therefore, the least squares criterion function) is

a discontinuous function of φ, violating Assumption 1a in the theory developed in Pastorello et

alia (2003, p.452).
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4. While the ILS procedure directly produces an intercept estimate, the Klein and Spady

(KS) estimator does not. Consequently, we do not report intercept estimates.
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APPENDIX

Proof of Theorem 1. By (i), there exist a constant c in [0, 1) which does not depend on

n or ω, and sets {An} with each An ⊆ Ω and IPAn → 1 as n → ∞, such that for each ω ∈ An,

|Mn(φ)−Mn(γ)| ≤ c|φ−γ| for each φ, γ in B0. Let ρ0 = |β0
n−β0|. By (iii), there exist sets {Bn}
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with each Bn ⊆ Ω and IPBn → 1 as n → ∞, such that for each ω ∈ Bn for all n large enough,

nδ supφ∈B0
|M̂n(φ) − Mn(φ)| is bounded and supφ∈B0

|M̂n(φ) − Mn(φ)| is arbitrarily small, in

particular, smaller than 1 − cρ0. Let Cn = An
⋂

Bn and note that IPCn → 1 as n → ∞. It

follows that for each ω ∈ Cn and for each γ in B0,

|M̂n(γ) − β0| ≤ |Mn(γ) − Mn(β0)| + |M̂n(γ) − Mn(γ)|

≤ cρ0 + sup
φ∈B0

|M̂n(φ) − Mn(φ)| < 1 .

Deduce that for each ω ∈ Cn, M̂n maps B0 to itself.

Next, note that |β̂i(n)
n − β0| can be bounded by a bias term plus a stochastic term. That is,

|β̂i(n)
n − β0| ≤ |βi(n)

n − β0| + |β̂i(n)
n − βi(n)

n | .

By (ii), the bias term has order Op(n
−δ) as n → ∞. Consider the stochastic term. Recall that

β̂0
n = β0 and that for each ω ∈ Cn, M̂n maps B0 to itself. It follows that for each ω ∈ Cn,

β̂
i(n)
n ∈ B0. Thus, for each ω ∈ Cn,

|β̂i(n)
n − βi(n)

n | = |M̂n(β̂i(n)−1
n ) − Mn(βi(n)−1

n )|

≤ |M̂n(β̂i(n)−1
n ) − Mn(β̂i(n)−1

n )| + |Mn(β̂i(n)−1
n ) − Mn(βi(n)−1

n )|

≤ sup
φ∈B0

|M̂n(φ) − Mn(φ)| + c |β̂i(n)−1
n − βi(n)−1

n | .

Apply the last inequality recursively to see that for each ω ∈ Cn,

|β̂i(n)
n − βi(n)

n | ≤ sup
φ∈B0

|M̂n(φ) − Mn(φ)|[1 + c + c2 + · · · + ci(n)−1]

≤ sup
φ∈B0

|M̂n(φ) − Mn(φ)|[1/(1 − c)] .

Condition (iii) implies that the stochastic term has order Op(n
−δ), which proves the result. 2

Proof of Theorem 2. This involves a trivial modification of the proof of Theorem 1.2
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Proof of Lemma 3. Fix φ and γ in B0. Since B0 is convex, we may apply a multivariate

Taylor expansion (e.g., Dieudonné, 1969, p.190) to write Mn(φ)−Mn(γ) = Λn(φ, γ)[φ−γ] where

Λn(φ, γ) =
∫ 1
0 Vn(γ + ξ(φ − γ))dξ. Similarly, we may write M̂n(φ) − M̂n(γ) = Λ̂n(φ, γ)[φ − γ]

where Λ̂n(φ, γ) =
∫ 1
0 V̂n(γ +ξ(φ−γ))dξ. Use (i) and (ii) and argue as in the proof of Theorem 1

that there exist sets {Cn} with each Cn ⊆ Ω and IPCn → 1 as n → ∞, such that for each

ω ∈ Cn, M̂ maps B0 to itself, and Mn(φ) is a contraction mapping on (B0, Ek) with fixed point

β0 and modulus of contraction c ∈ [0, 1) independent of n and ω. Then for each ω ∈ Cn and

for each φ, γ in B0,

|M̂n(φ) − M̂n(γ)| ≤ |Mn(φ) − Mn(γ)| + |[M̂n(φ) − M̂n(γ)] − [Mn(φ) − Mn(γ)]|

≤ c|φ − γ| + |[Λ̂n(φ, γ) − Λn(φ, γ)][φ − γ]| .

By (iii), the last term has order op(|φ − γ|) as n → ∞, from which the result follows. 2

Proof of Theorem 4. By (ii), there exist sets {An} with each An ⊆ Ω and IPAn → 1

as n → ∞ such that for each ω ∈ An, β̂n is a fixed point of M̂n(φ). For ω ∈ An, write β̂
i(n)
n −β0

as β̂
i(n)
n − β̂n + β̂n −β0. By (iii), |β̂i(n)

n − β̂n| has order op(n
−δ) as n → ∞. The result will follow

if, as n → ∞,

nδ(β̂n − β0) =⇒ DZ .

Since β̂n is a fixed point of M̂n(φ), M̂n(β̂n) = β̂n. Thus, for each ω ∈ An,

β̂n − β0 = M̂n(β̂n) − M̂n(β0) + M̂n(β0) − β0 .

Expand M̂n(β̂n) about β0 to get

M̂n(β̂n) − M̂n(β0) = V̂n(β∗
n)[β̂n − β0]
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where β∗
n is on the line segment connecting β̂n and β0. Combine the last two expressions to get

nδ(β̂n − β0) = [Ik − V̂n(β∗
n)]−1nδ(M̂n(β0) − β0) .

Note that

V̂n(β∗
n) = V (β0) + [V̂n(β∗

n) − V (β∗
n)] + [V (β∗

n) − V (β0)] .

Conditions (i) and (ii) imply that |β̂n − β0| = op(1) as n → ∞. This and the definition of

β∗
n imply that |β∗

n − β0| = op(1) as n → ∞. This and condition (v) imply that the first term

in brackets has order op(1) as n → ∞. Condition (vi) and the fact that |β∗
n − β0| = op(1) as

n → ∞ imply that the second term in brackets has order op(1) as n → ∞. This and condition

(iv) imply the result. 2

Next, we prove several lemmas used in the proof of consistency of the semiparametric ILS

estimator. The first is an extension of a result of Ichimura (1997, Lemma 4.1, p.29) relating a

nearest neighbor window width to the number of neighbors.

Recall that N is a neighborhood of β0, and for φ ∈ N , g(t, φ) is the density of X ′φ evaluated

at t ∈ IR. Define c(t, φ) = [
∫ ∞
t g(v, φ)dv]−1 and d(t, φ) = [

∫ t
−∞ g(v, φ)dv]−1. Note that for all

t ∈ IR, c(t, φ) ≥ 1 and d(t, φ) ≥ 1. In addition, by A10, both c(t, φ) and d(t, φ) are continuous

in t and φ. Define an(t, φ) to be the distance from t to its knth nearest neighbor to the right and

bn(t, φ) the distance from t to its knth nearest neighbor to the left. Recall that the trimming

function σn(t) = {|t| ≤ cα
n}. Fix µ > 0. Define Sn to be the interval [−cα

n, cα
n ], Ln the lower

interval [−cα
n,−µ], M the middle interval [−µ, µ], and Un the upper interval [µ, cα

n].

Lemma 1A: Suppose A2, A3, A5, A9, and A10 hold. Then, as n → ∞,

sup
M×N

|rn(t, φ) − 1| = op(1)
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where either rn(t, φ) = [nc(t, φ)g(t, φ)an(t, φ)]/kn or rn(t, φ) = [nd(t, φ)g(t, φ)bn(t, φ)]/kn.

Proof. We shall prove the result for the case rn(t, φ) = [nc(t, φ)g(t, φ)an(t, φ)]/kn. The

proof for the other case is similar.

Let H(·, t, φ) denote the cdf of (X ′φ − t)+. That is, for s ≥ 0,

H(s, t, φ) = IP{(X ′φ − t)+ ≤ s} = c(t, φ)

∫ t+s

t
g(v, φ)dv .

Let Hn(s, t, φ) denote the corresponding empirical cdf. That is, for s ≥ 0,

Hn(s, t, φ) = n−1
n

∑

i=1

1{(X ′
iφ − t)+ ≤ s} .

Note that Hn(an(t, φ), t, φ) = kn/n and so

H(an(t, φ), t, φ) = kn/n + [H(an(t, φ), t, φ) − Hn(an(t, φ), t, φ)] .

Standard empirical process results (e.g., Pakes and Pollard, 1989) imply that as n → ∞,

sup
IR+×IR×N

|H(s, t, φ) − Hn(s, t, φ)| = Op(n
−1/2) .

Thus, uniformly over IR ×N ,

H(an(t, φ), t, φ) = kn/n + Op(n
−1/2) .

This, and a Taylor expansion of H about s = 0 imply that uniformly over IR ×N ,

an(t, φ) = kn/[nc(t, φ)g(t + s∗, φ)] + Op(1/[n
1/2c(t, φ)g(t + s∗, φ)]) (1)

where s∗ is between zero and an(t, φ). Since kn � n1/2, we get from (1) that uniformly over

IR ×N ,

[nc(t, φ)g(t + s∗, φ)an(t, φ)]/kn = 1 + op(1) . (2)
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The continuity of g(t, φ) implies that IP{t ≤ X ′φ ≤ t + 1} is a continuous function of t and

φ on the compact set M × N . Thus, it achieves its minimum on this set. Moreover, this

minimum must be positive, since the support of X ′φ is IR for each φ in N . Deduce from a

standard uniform law of large numbers that wp → 1 as n → ∞, there exists a positive number

p independent of t ∈ M and φ ∈ N , such that there are at least pn points in [t, t + 1] for each

t ∈ M and φ ∈ N . Since kn � n, wp → 1 as n → ∞, an(t, φ) (and therefore, s∗) must be

in the interval [0, 1] for each t in M and φ in N . Since n1/2 � kn � n and 1/[c(t, φ)g(t, φ)]

is bounded over M × N , it follows from (1) that an(t, φ) = Op(kn/n) = op(1) uniformly over

M ×N . The left-hand side of (2) equals

nan(t, φ)c(t, φ)

kn
[g(t, φ) + [g(t + s∗, φ) − g(t, φ)]] . (3)

The result follows from (3), an(t, φ) = Op(kn/n), and a Taylor expansion of g(t + s∗, φ) about

s = 0 together with the uniform convergence of s∗ to zero and supt,φ |∇tg(t, φ)| < ∞. 2

Lemma 2A: Suppose A2, A3, A5, A9, and A10 hold. Then

(i) supLn×N |rn(t, φ) − 1| = op(1) as n → ∞ where rn(t, φ) = [nc(t, φ)g(t, φ)an(t, φ)]/kn.

(ii) supUn×N |rn(t, φ) − 1| = op(1) as n → ∞ where rn(t, φ) = [nd(t, φ)g(t, φ)bn(t, φ)]/kn.

Proof. We shall prove (i). The proof of (ii) is similar.

To establish (i), note that an argument similar to the one given in the proof of Lemma 1A

shows that wp → 1 as n → ∞, an(t, φ) (and therefore, s∗) must be in the interval [0, cα
n−µ+1] for

each t in Ln and φ in N . Fix δ ∈ (0, 1/8). Since n1/2 � kn � n1−δ and 1/[c(t, φ)g(t, φ)] � nδ

uniformly over Ln×N , it follows from (1) that an(t, φ) = op(kn/n1−2δ) uniformly over Ln×N .
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Result (i) now follows from (2) and (3), a Taylor expansion of g(t + s∗, φ) about s = 0, the fact

that s∗ = op(kn/n1−δ) uniformly over Ln ×N , and supt,φ |∇tg(t, φ)| < ∞. 2

Recall that we use three types of nearest neighbor estimators of F (t, φ): symmetric, asym-

metric from the right, and asymmetric from the left. The nearest neighbor estimator that is

asymmetric from the right has the form

F̂r(t, φ) =

∑n
j=1 Yj1{0 ≤ X ′

jφ − t ≤ an(t, φ)}
∑n

j=1 1{0 ≤ X ′
jφ − t ≤ an(t, φ)}

whereas the the nearest neighbor estimator that is asymmetric from the left has the form

F̂l(t, φ) =

∑n
j=1 Yj1{−bn(t, φ) ≤ X ′

jφ − t ≤ 0}
∑n

j=1 1{−bn(t, φ) ≤ X ′
jφ − t ≤ 0} .

The symmetric nearest neighbor estimator has the form

F̂s(t, φ) =

∑n
j=1 Yj1{−bn(t, φ) ≤ X ′

jφ − t ≤ an(t, φ)}
∑n

j=1 1{−bn(t, φ) ≤ X ′
jφ − t ≤ an(t, φ)} .

We see that if t 6= X ′
jφ for any j, F̂s(t, φ) is an arithmetic average of F̂r(t, φ) and F̂l(t, φ). We

shall establish rates of uniform consistency for F̂r(t, φ). The same results with similar proofs

can be obtained for the other types. Note that we can write

F̂r(t, φ) = (nan(t, φ))−1
n

∑

j=1

Yj1{0 ≤ X ′
jφ − t ≤ an(t, φ)}/ĝ(t, φ)

where

ĝ(t, φ) = (nan(t, φ))−1
n

∑

j=1

1{0 ≤ X ′
jφ − t ≤ an(t, φ)} .

Our next result gives a rate of uniform convergence of ĝ(t, φ) to g(t, φ) and F̂r(t, φ) to F (t, φ).

Lemma 3A: Suppose A2, A3, A5, A9, and A10 hold. Then, as n → ∞, for all δ > 0,

(i) n1/4−δ supSn×N |ĝ(t, φ) − g(t, φ)| = op(1).
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(ii) n1/4−δ supSn×N

∣

∣

∣F̂r(t, φ) − F (t, φ)
∣

∣

∣ = op(1).

Proof. We first prove (i). Decompose ĝ(t, φ) − g(t, φ) into a sum of a stochastic term

and a bias term:

[ĝ(t, φ) − IEĝ(t, φ)] + [IEĝ(t, φ) − g(t, φ)] . (4)

Let {εn} denote an arbitrary sequence of nonnegative real numbers satisfying εn → 0 as

n → ∞. By Lemma 1A and Lemma 2A, wp → 1 as n → ∞, for t ∈ Sn, φ ∈ N , and a satisfying

|nc(t, φ)g(t, φ)a/kn − 1| ≤ εn, the first term in (4) is bounded by

sup
t,φ,a

a−1

∣

∣

∣

∣

∣

∣

n−1
n

∑

j=1

1{0 ≤ X ′
jφ − t ≤ a} − IP{0 ≤ X ′φ − t ≤ a}

∣

∣

∣

∣

∣

∣

. (5)

Standard empirical process results (e.g., Pakes and Pollard, 1989) show that uniformly over

t ∈ IR, φ ∈ IRk, and a ≥ 0, the term in absolute value signs in (5) has order Op(n
−1/2) as

n → ∞. Deduce from this, A3, A5, and the condition on a, that for all δ > 0, the term in (5)

has order op(n
−1/4+δ) as n → ∞.

Next, consider the bias term in (4). This term, wp → 1 as n → ∞, for t ∈ Sn, φ ∈ N , and

a satisfying |nc(t, φ)g(t, φ)a/kn − 1| ≤ εn, is bounded by

sup
t,φ,a

∣

∣

∣a−1IP{0 ≤ X ′φ − t ≤ a} − g(t, φ)
∣

∣

∣ . (6)

After the change of variable z = (v − t)/a,

a−1IP{0 ≤ X ′φ − t ≤ a} = a−1
∫ ∞

−∞
1{0 ≤ v − t ≤ a}g(v, φ)dv

=

∫ 1

0
g(t + az, φ)dz .

A Taylor expansion of g(t + az, φ) about t, together with the bounded derivative in A9, A3,

A5, and the condition on a, imply that for each δ > 0, the term in (6) has order op(n
−1/4+δ)

as n → ∞. This proves (i).
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Mimic the proof of (i) to prove that

n1/4−δ sup
Sn×N

∣

∣

∣F̂r(t, φ)ĝ(t, φ) − F (t, φ)g(t, φ)
∣

∣

∣ = op(1) . (7)

To prove (ii), note that

F̂r(t, φ) =
F̂r(t, φ)ĝ(t, φ)

g(t, φ)

[

1 − ĝ(t, φ) − g(t, φ)

g(t, φ) + [ĝ(t, φ) − g(t, φ)]

]

.

Apply (i), (7), and A5 to get the result. 2

Lemma 4A: Let P be a probability distribution and V1, . . . , Vn a sample of independent

observations from P . Let λn be the infimum of the density of P over [−κn, κn], 0 < κn < ∞,

and suppose λn > 0. For αn > 0, partition [−κn, κn] into N = (2κnn)/αn intervals of length

αn/n. For i = 1, . . . , N , let Ai be the event that the ith interval contains at least one sample

point. As n → ∞,

(i) If κn → C < ∞, then λn → c > 0 and IP{∩N
i=1Ai} → 1 provided cαn > log n.

(ii) If κn → ∞, then λn → 0 and IP{∩N
i=1Ai} → 1 provided κn � αn and λnαn > log n.

Proof. By Bonferroni’s inequality,

IP{∩N
i=1Ai} ≥ 1 −

N
∑

i=1

IPAc
i

≥ 1 −
N

∑

i=1

(1 − (λnαn)/n)n

= 1 − N(1 − (λnαn)/n)n .

Both (i) and (ii) now follow from simple calculus. 2

Lemma 5A is used in the proof of Lemma 5. It is proved in a more general form in Klein

and Spady (1993). For ease of reference, we restate the result in the form in which we use it in

the proof of Lemma 5.
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Lemma 5A: Suppose f(·) is bounded and IE|X| < ∞. Then

[∇φF (X ′φ, φ)
]

β0
= f(X ′β0)

[

X − IE[X | X ′β0]
]

.

Proof of Lemma 5. Note that Vn(φ) = ∇φMn(φ) is an average of iid random variables.

By A11 and Lemma 2.13 in Pakes and Pollard (1989), Vn(φ) converges uniformly to IEVn(φ)

on N . Moreover, A11 implies that IEVn(φ) is continuous on N .

Fix φ and γ in N . By a multivariate Taylor expansion, there exists a φ∗ on the line segment

between φ and γ such that as n → ∞,

|Mn(φ) − Mn(γ)| = |Vn(φ∗)[φ − γ]|

≤ |Vn(β0)[φ − γ]| + |[IEVn(φ∗) − IEVn(β0)][φ − γ]| + op(|φ − γ|) .

By the continuity of IEVn(φ) on N and a standard linear algebra result, it is enough to show

that wp → 1 as n → ∞, the largest eigenvalue of Vn(β0) in absolute value is strictly less than

unity. To this end, recall that

Mn(φ) = (φ1 − n−1
n

∑

j=1

Xj1uj(φ), . . . , φk − n−1
n

∑

j=1

Xjkuj(φ))′

where

uj(φ) =
[

F (X ′
jβ0)ν(X ′

jφ, φ) + [1 − F (X ′
jβ0)]π(X ′

jφ, φ)
]

.

Write ∇c for ∂
∂φc

, c = 1, 2, . . . , k. The rcth element of Vn(β0) equals

1{r = c} − n−1
n

∑

j=1

Xjr

[

F (X ′
jβ0)

[

∇cν(X ′
jφ, φ)

]

β0

+ [1 − F (X ′
jβ0)]

[

∇cπ(X ′
jφ, φ)

]

β0

]

. (8)
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Recall that X = (W1, . . . ,Wk,Wk+1) and W1 = 1. Integrate by parts, then differentiate and

apply Lemma 5A to get that
[

∇cν(X ′
jφ, φ)

]

β0

equals

∫ X′

j
β0

−∞ F (u) du f(X ′
jβ0)

[

Wjc − IE[Wjc | X ′
jβ0]

]

+ F (X ′
jβ0)

∫ X′

j
β0

−∞ f(u)IE[Wc | X ′β0 = u] du

F 2(X ′
jβ0)

.

Similarly,
[

∇cπ(X ′
jφ, φ)

]

β0

equals

∫ ∞
X′

j
β0

[1 − F (u)] du f(X ′
jβ0)

[

Wjc − IE[Wjc | X ′
jβ0]

]

+ [1 − F (X ′
jβ0)]

∫ ∞
X′

j
β0

f(u)IE[Wc | X ′β0 = u] du

[1 − F (X ′
jβ0)]2

.

Integration by parts arguments show that

ν1(X
′
jβ0) =

∫ X′

j
β0

−∞ F (u) du f(X ′
jβ0)

F 2(X ′
jβ0)

π1(X
′
jβ0) =

∫ ∞
X′

j
β0

[1 − F (u)] du f(X ′
jβ0)

[1 − F (X ′
jβ0)]2

.

Write d(X ′
jβ0) for F (X ′

jβ0)ν1(X
′
jβ0) + [1 − F (X ′

jβ0)]π1(X
′
jβ0). The term in outer brackets in

(8) is equal to

(Wjc − IE[Wjc | X ′
jβ0])d(X ′

jβ0) + κc

where

κc =

∫ ∞

−∞
f(u)IE[Wc | X ′β0 = u] du . (9)

This and prewhitening let us write the rcth element of Vn(β0) as

n−1
n

∑

j=1

Wjr

[

Wjc − (Wjc − IE[Wjc | X ′
jβ0])d(X ′

jβ0) − κc

]

(10)

Since W1 = 1, κ1 = 1. Prewhitening implies that Wj1 = 1 for all j. Deduce that for r = 1, . . . , k

and c = 1, the rcth element of Vn(β0) equals zero. That is, the first column of Vn(β0) is a vector

of zeros. This implies that one solution of the characteristic equation of Vn(β0) must be zero.

Thus, to prove that wp → 1 as n → ∞, the maximum eigenvalue of Vn(β0) in absolute value
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is strictly less that unity, it is enough to prove this for the (k − 1) × (k − 1) lower right-hand

submatrix of Vn(β0). For convenience, we call this submatrix An.

Prewhitening implies that
∑n

j=1 Wjr = 0 for r > 1. Deduce from this and (10) that the rcth

element of An equals

n−1
n

∑

j=1

Wjr

[

Wjc − (Wjc − IE[Wjc | X ′
jβ0])d(X ′

jβ0)
]

.

Let Xn denote the n × (k − 1) matrix comprised of the second through kth components of

each regressor vector, and let Xβ0 denote the n × 1 vector with jth component X ′
jβ0. Define

Tn = n−1/2Xn and Sn = n−1/2
[

Xn − IE[Xn | Xβ0]
]

. Also, let Dn denote the n × n diagonal

matrix with jjth element d(X ′
jβ0). We see that

An = T ′
nTn − T ′

nDnSn .

By prewhitening, T ′
nTn = Ik−1 = T ′

nInTn. The fact that T ′
nDnSn = S′

nDnSn + op(1) as n → ∞

implies that wp → 1 as n → ∞,

An = T ′
nInTn − S′

nDnSn

= T ′
n[In − Dn]Tn + T ′

nDnTn − S′
nDnSn

= T ′
n[In − Dn]Tn + [Tn − Sn]′Dn[Tn − Sn]

= W ′
nWn + Z ′

nZn

where Wn = [In − Dn]1/2Tn and Zn = D
1/2
n [Tn − Sn]. (Note that log-concavity of u and

Proposition 1 in Heckman and Honoré (1990) imply that the diagonal elements of Dn are in

[0, 1], making it possible to form D
1/2
n and [In − Dn]1/2.) Thus, wp → 1 as n → ∞, An is a

nonnegative definite matrix and so must have all nonnegative eigenvalues. Recall from above
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that wp → 1 as n → ∞,

An = Ik−1 − S′
nDnSn

= Ik−1 − Σ′
nΣn

where Σn = D
1/2
n Sn. It follows that wp → 1 as n → ∞, the maximum eigenvalue of An is equal

to

max
|x|=1

x′Anx = max
|x|=1

[

1 − x′Σ′
nΣnx

]

.

A1 and A2 imply that IP{u ∈ Su∩Sφ} = 1. Thus, x′Σ′
nΣnx is positive and bounded away from

zero for all unit vectors x ∈ IRk−1. Thus, wp → 1 as n → ∞, the maximum eigenvalue of An is

strictly less than unity. This proves the result. 2

Proof of Lemma 6. Note that |M̂n(φ) − Mn(φ)| is bounded by

∣

∣

∣n−1X′
n [ûn(φ) − ũn(φ)]

∣

∣

∣ +
∣

∣

∣n−1X′
n [ũn(φ) − ūn(φ)]

∣

∣

∣ +
∣

∣

∣n−1X′
n [ūn(φ) − un(φ)]

∣

∣

∣ (11)

where ûn(φ) = (û1(φ), . . . , ûn(φ))′ with ûj(φ) =
[

Yj ν̂(X ′
jφ, φ) + (1 − Yj)π̂(X ′

jφ, φ)
]

τn(X ′
jφ),

ũn(φ) = (ũ1(φ), . . . , ũn(φ))′ with ũj(φ) =
[

Yjν(X ′
jφ, φ) + (1 − Yj)π(X ′

jφ, φ)
]

τn(X ′
jφ), ūn(φ) =

(ū1(φ), . . . , ūn(φ))′ with ūj(φ) =
[

F (X ′
jβ0)ν(X ′

jφ, φ) + (1 − F (X ′
jβ0))π(X ′

jφ, φ)
]

τn(X ′
jφ), and

un(φ) = (u1(φ), . . . , un(φ))′ with uj(φ) =
[

F (X ′
jβ0)ν(X ′

jφ, φ) + (1 − F (X ′
jβ0))π(X ′

jφ, φ)
]

.

Each component of the second term in (11) is an average of zero mean iid random variables.

Deduce from this, A11, IE|X|2 < ∞, and Lemma 2.13 in Pakes and Pollard (1989) that this

term has order Op(n
−1/2) uniformly over N .

Each component of the third term in (11) can be decomposed into its mean plus a term that

is an average of zero mean iid random variables. This latter term has order Op(n
−1/2) uniformly

over N . This follows from the same argument used to handle the second term in (11). The
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mean of the ith component is IEWi [F (X ′β0)ν(X ′φ, φ) + (1 − F (X ′β0))π(X ′φ, φ)] [τn(X ′φ) − 1]

which converges to zero as n → ∞ by A2, A11, and dominated convergence, since τn(t) → 1 as

n → ∞ for all t ∈ IR.

Consider the first term in (11). The result will follow if wp → 1 as n → ∞, uniformly

over j for which τn(X ′
jφ) = 1 and φ ∈ N , ν̂(X ′

jφ, φ) converges to ν(X ′
jφ, φ) and π̂(X ′

jφ, φ)

converges to π(X ′
jφ, φ). We will prove the former. Proof of the latter is similar. Note that

τn(X ′
jφ)

∣

∣

∣ν̂(X ′
jφ, φ) − ν(X ′

jφ, φ)
∣

∣

∣ equals

τn(X ′
jφ)

∣

∣

∣

∣

∣

∣

j
∑

i=1

σn(X ′
iφ)F̂ (X ′

iφ, φ)∆(X ′
iφ)

F̂ (X ′
jφ, φ)

−
∫ X′

j
φ

−∞ F (u, φ) du

F (X ′
jφ, φ)

∣

∣

∣

∣

∣

∣

(12)

≤ τn(X ′
jφ)

∣

∣

∣

∣

∣

∣

j
∑

i=1

σn(X ′
iφ)F̂ (X ′

iφ, φ)∆(X ′
iφ)

F̂ (X ′
jφ, φ)

−
j

∑

i=1

σn(X ′
iφ)F (X ′

iφ, φ)∆(X ′
iφ)

F (X ′
jφ, φ)

∣

∣

∣

∣

∣

∣

(13)

+ τn(X ′
jφ)

∣

∣

∣

∣

∣

∣

j
∑

i=1

σn(X ′
iφ)F (X ′

iφ, φ)∆(X ′
iφ)

F (X ′
jφ, φ)

−
∫ X′

j
φ

−∞ F (u, φ) du

F (X ′
jφ, φ)

∣

∣

∣

∣

∣

∣

. (14)

Consider (13) in the last display. A4 and the fact that F̂ (X ′
iφ, φ) is bounded between zero

and unity imply that for all δ > 0,

j
∑

i=1

σn(X ′
iφ)F̂ (X ′

iφ, φ)∆(X ′
iφ) � nδ . (15)

Deduce from (15), Lemma 3A(iii), and A6, that for all δ > 0, wp → 1 as n → ∞, uniformly

over j and φ,

τn(X ′
jφ)

∣

∣

∣

∣

∣

∣

j
∑

i=1

σn(X ′
iφ)F̂ (X ′

iφ, φ)∆(X ′
iφ)

[

1

F̂ (X ′
jφ, φ)

− 1

F (X ′
jφ, φ)

]

∣

∣

∣

∣

∣

∣

= op(n
−1/4+δ) . (16)

It then follows from (15), (16), Lemma 3A(iii), and A6, that for all δ > 0, wp → 1 as n → ∞,

uniformly over j and φ, the term in (13) has order op(n
−1/4+δ).

Next, consider (14). Write X ′
σφ for the smallest index value for which σn(X ′

iφ) = 1. If

τn(X ′
jφ) = 1, then X ′

jφ ≥ −cn. By A7, F (t, φ) ↘ 0 as t → −∞ for each φ ∈ N . This and the
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triangle inequality imply that wp → 1 as n → ∞ the term in (14) is bounded by

1

F (X ′
jφ, φ)

j
∑

i=σ

∣

∣

∣

∣

∣

F (X ′
iφ, φ)∆(X ′

iφ) −
∫ X′

i
φ

X′

i−1
φ

F (u, φ) du

∣

∣

∣

∣

∣

+

∫ X′

σ−1
φ

−∞ F (u, φ) du

F (−cn, φ)
. (17)

By A5 and Lemma 4A, wp → 1 as n → ∞, X ′
σ−1φ can be made arbitrarily close to −cα

n.

Deduce that the second term in (17) is bounded by
∫ −cα

n
−∞ F (u, φ) du/F (−cn, φ) which converges

to zero by A7. Consider the first term in (17). Define H(ε) =
∫ t
t−ε F (u, φ) du. By A9 and a

Taylor expansion of H(ε) about ε = 0 followed by a Taylor expansion of F (t− ε, φ) about ε = 0,

we see that H(ε) = εF (t, φ) + O(ε2) uniformly over t ∈ IR and φ ∈ N . Deduce from this and

A5 that the first term in (17) has order o(n1+δ∆2
n) for all δ > 0 where ∆n = supφ ∆n(φ) with

∆n(φ) = maxi{∆(X ′
iφ)σn(X ′

iφ)}, the norm of the partition of the interval [−cα
n, cα

n]. By A5

and Lemma 4A, wp → 1 as n → ∞, ∆n � nδ log n/n for all δ > 0. Deduce that as n → ∞, the

first term in (17) has order op(n
δ−1) for all δ > 0. This proves the result. 2
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