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Abstract

We consider a continuous time model of the project value process that can only be observed
with noise, and we allow for the possibility that the manager in charge of the project can mis-
represent the observed value. The manager is compensated by the shareholders, based on the
filtering estimate of the project outcome. By means of a variational calculus methodology, novel
for this kind of problems, we are able to compute in closed form the optimal pay-per-performance
sensitivity of the compensation and the optimal misreporting action. We illustrate our theoretical
predictions through a detailed comparative statics analysis, which indicates that the shareholders
induce the manager to increase the amount of misreporting over time.

Keywords: variational calculus; stochastic filtering; optimal compensation; hidden action; risk-
sharing.

1 Introduction
We consider a continuous-time model of the firm’s value process in which shareholders hire a manager
to run the firm, and pay him a part of the proceeds as compensation. The payment is decided by
a contract between the two parties. The first and seminal continuous-time model was developed
in Holmstrom and Milgrom (1987), and considers the case of hidden action, in which the manager’s
control (effort) of the drift of the project value process cannot be contracted upon, either because
it is unobserved by the shareholders, and/or because that is not legally enforceable. Their work
was generalized and extended by many authors, including Schättler and Sung (1993, 1997). See
also Ou-Yang (2005), Ju and Wan (2010), and Cuoco and Kaniel (2011). Cvitanić, Wang and
Zhang (2009) uses the stochastic maximum principle and forward-backward stochastic differential
Equations (FBSDEs) to characterize the optimal compensation for more general utility functions.
Giat et al. (2010) consider a model in which the project value is observed, but its risk premium (drift
term) is not observed, and the shareholders and the manager may have different prior beliefs about
it. Goukasian and Wan (2010) consider a hidden action framework with multiple agents who only
care about their relative position and study the impact of this assumption on the optimal contract.

The distinguishing features of our model are: (i) the actual project output is not observed directly,
but only with noise; (ii) the manager can bias the observations of the actual project output by his
actions. In justifying the modeling assumption (i), let us mention that the presence of accounting
noise in reports has been well documented in the literature, and has been found to be an important
determinant of corporate credit spreads, see, e.g., Capponi and Cvitanić (2008). Assumption (ii)
means that the manager can misreport the accounting reports in order to increase his own utility,
albeit at a cost. Even if the misreporting action is hidden, the shareholders are aware of its possibility,
and can correctly compute the amount of the manager’s misreporting in equilibrium. Moreover, the
manager incurs a penalty for applying misreporting action, which may be interpreted as a reduced
form model of the reputation concerns, for example from negative effects on him of potential auditing.
Higher auditing frequency would correspond to increasing the cost of the misreporting action.

We assume that the shareholders (like the manager) have short-term objectives, and are not
concerned about the long-term value of the firm. Further, we assume that the outside market is
unable to detect, or correctly estimate the level of misreporting in the short run. This can be due to
several reasons. For example, outside investors may lack information on the utility functions of the
manager and/or the shareholders, or on which compensation contract is promised to the manager.
Alternatively, we can think of a part of the market as composed of unsophisticated investors, for
example small retail investors, who are more likely to trust the released reports, and would take
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longer time to question their validity due to their inability to well understand firms’ disclosures, see
Fishman and Hagerty (2003). Clearly, misreporting could be detected or estimated in the long run,
effectively bursting a “bubble” created by it. We assume this can happen only after the contract is
paid, and thus it is not modeled here1.

As misreporting affects the probability distribution of the observed output process but is not
correctly accounted for by the market, it results in the market producing biased estimates of the
output process. This implies that both shareholders and managers could extract benefits from
misreporting, as they would be able to sell the firm to the market in the short term at a premium
over the actual value.

We are interested in characterizing the behavior of the optimal pay-per-performance sensitivity
and misreporting action applied by the manager over time under a hidden action model. In order
to test the robustness of our qualitative conclusions, we also consider the risk sharing informational
framework, in which the misreporting action is decided by shareholders and manager together, so as
to maximize their joint utility. We assume that compensation is linear in the market estimate of the
value of the output process, and that both manager and shareholders have exponential utilities. The
partial observability of the output makes the optimization problem non-standard, thus requiring a
proper reformulation as a free-boundary calculus of variation problem with constraints. This differs
from previous works in the literature, where full information about the output is available. To this
end, we apply a novel variational methodology based on time dependent Lagrangian multipliers
and we are able to obtain an explicit solution to the problem via the Euler-Lagrange equation,
thus facilitate a comparative statics analysis. Despite the methodology is specialized to the above
described misreporting problem, the variational techniques developed in this paper can be viable to
analyze moral hazard problems where multiple non-contractible actions are taken.

Different methodologies using variational analysis have been applied to principal agent theory
within an adverse selection framework. Those include Carlier, Ekeland and Touzi (2007), who
show existence and uniqueness of the optimal derivative design, and Figalli, Lom and McCann
(2011) who derive uniqueness and stability of the principal’s optimum strategy. Horst and Moreno-
Bromberg (2008) generalize the principal’s utility function by assuming that contract design exposes
the principal to additional risk, measured by a convex risk measure.

Through our analysis, we find that the shareholders decrease the pay-per-performance sensitivity
offered to the manager when the level of observation noise increases, which in turns leads the manager
to apply a smaller amount of misreporting. This happens because, as the intensity of the noise gets
higher, the gain resulting from the fact that the market is unaware of misreporting becomes smaller
and smaller. Moreover, we find that it is optimal for shareholders to induce the manager to increase
the level of misreporting over time. Thus, if regulators were to undertake early auditing actions,
they would prevent higher and higher levels of accounting irregularities from occurring.

The remainder of the paper is organized as follows. Section 2 describes the model. Section 3
introduces and analyzes the problem with hidden misreporting action in detail. Section 4 deals with
the risk-sharing problem of maximizing the joint welfare. Section 5 performs a comparative statics
analysis. Section 6 concludes our study. Longer proofs are delegated to Section 7.

1More direct and mathematically sophisticated modeling of price bubbles is an active area in research; see, e.g.,
Loewenstein and Willard (2000), Cox and Hobson (2005), Jarrow, Protter, and Shimbo (2010).

3



2 The Model
We work on a probability space (Ω,FT ,P), where T is a fixed time horizon. We assume that the
project value (profit/loss, firm value, outcome) process is given by

dxt = θϵdt+ ϵdWt (2.1)

for some constants θ > 0, ϵ > 0, and a Ft-Brownian motion Wt. We assume that x0 is observed,
for simplicity. The project value has to be shared between the owners (the shareholders) and the
manager. We assume that the value process is not directly observed, instead, what is observed is
process y given by

dyt = xtdt+ σdZ0
t (2.2)

where Z0
t is a Ft-Brownian motion independent of Wt. We denote by F

y
t the filtration generated

by the observation process {yt}. Here, σ > 0 models the accounting noise. Given a deterministic
bounded function at,2 defined on the interval [0, T ], which represents the manager’s action, we define

Za
t = Z0

t −
∫ t

0

as

σ
ds (2.3)

Ma
t = exp

{∫ t

0

as

σ
dZ0

s − 1
2

∫ t

0

(
as

σ

)2
ds

}
(2.4)

Pa(A) = E [Ma
T 1A] (2.5)

Then, we know by Girsanov theorem that Pa(A) is a probability measure and Za
t is a (Ft,Pa)

Brownian motion. The manager’s choice of at corresponds to the choice of the probability measure
Pa, and thus to the choice of the distribution of the observation process yt. In other words, the
manager adds the misreporting amount at to the rate of the actual outcome process xt, thus (possibly)
introducing bias.

For a given function at, we introduce the filter process,

x̂a
t = Ea

t [xt]
△= EPa [xt|Fy

t ].

Remark 2.1. Our setup models misreporting via a change of measure method, which is a standard
modeling procedure for hidden action problems, including the original Holmstrom-Milgrom model.
One novelty here is that we will use not only quantities computed under measure Pa, but, as we shall
see, also x̂0, the estimate of the output under the (incorrect) assumption that there is no misreporting.

We can write
dyt = [x̂a

t + at]dt+ σdẐa
t (2.6)

where
Ẑa

t = Za
t + 1

σ

∫ t

0
[xs − x̂a

s ] ds (2.7)

is the innovation process for our filter, which is well known to be a (Fy
t ,Pa)-Brownian motion, see

2We assume deterministic action, and, later below, linear contracts, for tractability reasons. In the classical
Holmstrom-Milgrom model, the optimal action is, in fact, deterministic and the optimal contract is linear. It is
possible that also in our model these assumptions are without loss of generality, but we don’t have a proof.
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Liptser and Shiryaev (2000). Note that the classical Kalman-Bucy filter gives

dx̂a
t = θϵdt+ vt

σ
dẐa

t (2.8)

where vt satisfy the first order differential equation

v′
t = ϵ2 − 1

σ2 v
2
t

with solution

vt = ϵσ
e

ϵt
σ − e− ϵt

σ

e
ϵt
σ + e− ϵt

σ

= ϵσ tanh
(
ϵt

σ

)
(2.9)

We have the following useful relations, which will be extensively used later:

Lemma 2.1. We have
Ẑ0

t =
∫ t

0

σ

vs
dx̂0

s −
∫ t

0

ϵσθ

vs
ds (2.10)

and so, Ẑa
t is expressed in terms of x̂0

t as

Ẑa
t = Ẑ0

t −
∫ t

0

as

σ
ds+

∫ t

0

x̂0
s − x̂a

s

σ
ds. (2.11)

Moreover, x̂0
t may be expressed in terms of Ẑa

t as

dx̂0
t = ϵθdt+ vt

σ
dẐa

t + vtat

σ2 dt− vt

σ2

(
x̂0

t − x̂a
t

)
dt.

The proof of Lemma 2.1 is provided in Section 7.1. If we assume that at is deterministic, as
we will, the filter mismatch term x̂0

t − x̂a
t may be explicitly computed. The result is given in the

following lemma, whose proof is presented in Section 7.1.

Lemma 2.2.

x̂0
t − x̂a

t =
ϵ
∫ t

0 sinh
(

ϵs
σ

)
as ds

σ cosh
(

ϵt
σ

) . (2.12)

We restrict our analysis to the linear contracts of the form

CT = c+
∫ T

0
αtdx̂

0
t

where αt is deterministic. The payment CT is thus an F
y
T -measurable random variable, and should

be interpreted as a payment in cash, the amount of which depends on random outcomes of x̂0 by time
T . The justification for using x̂0 rather than x̂a is that the payments legally have to be offered under
the assumption that there is no misreporting. In what follows, we make the following assumption

Assumption 2.1. Both the misreporting action at and the pay-per-performance sensitivity (PPS)
αt belong to the set of deterministic continuously differentiable functions on the interval [0, T ].

We will use αHA
t and aHA

t to denote, respectively, the optimal pay-per-performance sensitivity,
and optimal misreporting action in this hidden action framework. We, instead, use αRS

t and aRS
t later

below, to denote, respectively, the optimal pay-per-performance sensitivity, and optimal misreporting
action in the risk-sharing framework.

5



3 Hidden Action
We assume that the manager is maximizing, over the choice of at, the expected utility

Ea[U1(CT −GT )] △= EPa [U1(CT −GT )]

where Ea is the expectation corresponding to the action process a, CT is the payment from the
shareholders to the manager at time T , and GT is the cost the manager faces. We assume the latter
to be of the form

GT =
∫ T

0
g(at)dt

where g(x) is assumed to be a strictly convex function so that

g(x) ≥ ξ
x2

2
(3.1)

As already mentioned in the introduction, this cost may be thought of as a reduced form modeling
of the negative reputation effects on the manager if his misreporting is discovered by the market.
The information structure in our model is as follows.

• The manager observes process y, and chooses action a.

• The shareholders observe process y, and do not necessarily observe action a, but they compute
it correctly from knowing everything about the model. Therefore, they can also produce an
unbiased estimate of the outcome process using the observations.

• The market (outside investors) can not compute exactly the misreporting level optimal for the
manager, due to lack of information.

For simplicity, we will assume that the outside investors estimate the output process by x̂0
t , that

is, assuming no misreporting. This is approximately true if their prior for action a is that of no
misreporting (at ≡ 0), and the time horizon T is short. Our results below would remain qualitatively
the same if we assumed that the market value of the firm at time T is given by x̂af for some fixed
“conjectured" level of misreporting af , different from the actual level. Such an assumption is justified
if the market does not know exactly the manager’s or the shareholders’ utility functions and/or the
cost function, or does not know other parameters of the model, but tries to form inferences about
the misreporting level over time through observations of the output process. That would also be the
case if with some positive probability p the market uses x̂0 as the estimate, and with probability
1 − p it uses the unbiased estimate x̂a. We focus on the setting in which they use x̂0, to examine the
effects of misreporting in this extreme case.

Let us also mention that, even though the true value of the firm may be known eventually (or
asymptotically) as time goes by, so that the long-term shareholders will be awarded the actual value,
short-term shareholders that we are modeling are hoping to be able to sell off their shares at the
value inflated by misreporting. Effectively, as already stated in the introduction, there is a “bubble"
that we assume may burst only after time T , and is thus not modeled here.

The shareholders’ problem is to maximize over CT the expected value

Ea[U2(x̂0
T − CT )] (3.2)
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under the constraint that the manager’s expected utility is at least R0, for some given constant R0.
The quantity x̂0

T −CT can be interpreted as the residual gain for the shareholders, i.e. the proceeds
from the sale of the firm to the market, after paying the manager. Moreover, the fact that the
shareholders take expectation under the measure Pa corresponds to the assumption that they can
compute the level of the manager’s misreporting exactly.

In what follows, we make the following assumption

Assumption 3.2. αt ≥ 0.

This is a natural condition, guaranteeing that the compensation is higher with higher returns in
output. We restrict our attention to exponential utilities, assuming that

U1(x) = −e−γ1x U2(x) = −e−γ2x (3.3)

We now introduce the following quantities

pt
△=
∫ t

0
sinh

(
ϵs

σ

)
as ds, (3.4)

and
qt

△=
∫ T

t
g′(as) ds. (3.5)

3.1 Optimal misreporting given contract

In this subsection we study the optimal misreporting action for a given contract. We establish a
relation which connects given αt to the optimal at. Before giving the main result, we give an auxiliary
lemma.

Lemma 3.3. If at, t > 0, minimizes the functional∫ T

t

[
1
2
γ1α

2
s

v2
s

σ2 − θϵαs + g(as) − αs
vs

σ2

(
as −

(
ϵ
∫ s

0 sinh
(

ϵr
σ

)
ardr

σ cosh
(

ϵs
σ

) ))]
ds

then the following relation must hold for t > 0

αt = σ2

vt
g′(at) +

∫ T

t
g′(as) ds. (3.6)

The proof of the lemma is presented in Section 7.2. We then have the following result which
establishes the relationship between the optimal pay-per-performance sensitivity and misreporting
action.

Proposition 3.1. The pay-per-performance sensitivity αHA
t corresponding to the manager’s optimal

misreporting action aHA
t satisfies

αHA
t = σ2

vt
g′(aHA

t ) +
∫ T

t
g′(aHA

s ) ds. (3.7)
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Proof. The manager maximizes over at his utility function

Ea[U1(CT −GT )] = Ea

[
− exp

{
−γ1(CT −

∫ T

0
g(at)dt)

}]

= Ea

[
− exp

{
−γ1

(
c+

∫ T

0
αtdx̂

0
t −

∫ T

0
g(at)

)
dt

}]
= − exp {Σ} (3.8)

where

Σ = −γ1

(
c+

∫ T

0
αt

(
θϵ− 1

2
αtγ1

v2
t

σ2 + vtat

σ2 − vt

σ2

(
ϵ
∫ t

0 sinh
(

ϵs
σ

)
as ds

σ cosh
(

ϵt
σ

) ))
dt

)
+ γ1

∫ T

0
g(at)dt

Note that the last equality (3.8) follows from using the expression for x̂0
t given in Eq. (2.12), and the

fact that, for a given deterministic function ψ(t), we have

Ea

[
exp

(∫ T

0
ψ(t) dẐa

t

)]
= exp

(
1
2

∫ T

0
ψ(t)2 dt

)
(3.9)

Maximizing the above expectation is equivalent to the problem

aHA
t

△= argmina

∫ T

0

[
1
2
γ1α

2
t

v2
t

σ2 − θϵαt + g(at) − αt
vt

σ2

(
at −

(
ϵ
∫ t

0 sinh
(

ϵs
σ

)
asds

σ cosh
(

ϵt
σ

) ))]
dt.

Application of Lemma 3.3 thus yields the result.

3.2 Optimal Contract

The shareholders want to maximize, over αt, the expected utility given by Eq. (3.2), under the
reservation constraint that the manager expected utility, given by Eq. (3.8), is equal to R0. From
this constraint, we obtain

R0 = −E
[
exp

{
−γ1c− γ1

∫ T

0
αtdx̂

0
t + γ1g(at)dt

}]

= − exp
{

−γ1

[
c+

∫ T

0

(
αt

(
ϵθ − γ1

2
v2

tαt

σ2 + vtat

σ2 − vt

σ2

(
x̂0

t − x̂a
t

))
− g(at)

)
dt

]}
(3.10)

leading to

e−γ1c = −R0 exp
{
γ1

[∫ T

0

(
αt

(
ϵθ − γ1

2
v2

tαt

σ2 + vtat

σ2 − vt

σ2

(
x̂0

t − x̂a
t

))
− g(at)

)
dt

]}

and therefore, solving for c in the above equation, we arrive at

c = − 1
γ1

log(−R0) −
∫ T

0

(
αt

[
θϵ− 1

2
v2

t

σ2 γ1αt + vtat

σ2 − vt

σ

(
x̂0

t − x̂a
t

)]
− g(at)

)
dt. (3.11)
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Using the expression for c given in Eq. (3.11), and using Eq. (2.12) to express everything in terms
of Ẑa

t , we can immediately verify that

CT = c+
∫ T

0
αtdx̂

0
t

= − 1
γ1

log(−R0) + γ1
2

∫ T

0
α2

t

v2
t

σ2dt+
∫ T

0
αt
vt

σ
dẐa

t +
∫ T

0
g(at)dt. (3.12)

Plugging the expression for x̂0
T obtain from integrating the SDE in Eq. (2.12) and the expression for

CT given by Eq. (3.12) into Eq. (3.2), where we recall that U2(x) = −e−γ2x, we get that we need to
minimize, over at,

Ea
[
exp

{
−γ2(x̂0

T − CT )
}]

= Ea
[

exp
{

− γ2

[
x0 +

∫ T

0
ϵθdt

]
+ γ2γ1

2

∫ T

0

α2
t v

2
t

σ2 dt

+γ2

∫ T

0

[
g(at) − atvt

σ2

]
dt− γ2

∫ T

0

vt

σ
dẐa

t

+γ2

∫ T

0
αt
vt

σ
dẐa

t + γ2

∫ T

0

vt

σ

ϵ
∫ t

0 sinh
(

ϵs
σ

)
as ds

σ2 cosh
(

ϵt
σ

) dt

}]
. (3.13)

As at is deterministic, for a given square-integrable deterministic function ψ, the expectation above
can be computed by using Eq. (3.9). Therefore, we want to minimize

A(t, at)
△=
∫ T

0

[
γ1
2
α2

t v
2
t

σ2 + g(at) − 1
σ2atvt + γ2

2

(
−vt

σ
+ αt

vt

σ

)2
+ vt

σ

ϵ
∫ t

0 sinh
(

ϵs
σ

)
as ds

σ2 cosh
(

ϵt
σ

) ]
dt (3.14)

where the expression for αt is given in Eq. (3.7). It follows from Eq. (3.4) and Eq. (3.5) that

p0 = 0, qT = 0, (3.15)

and for t > 0 we have
p′

t = sinh
(
ϵt

σ

)
at, q′

t = −g′(at) (3.16)

from which we obtain
q′

t = −g′
(

csch
(
ϵt

σ

)
p′

t

)
, (t > 0). (3.17)

Observe that Eq. (3.4) and Eq. (3.5) turn the integral in Eq. (3.14) into

AL(t, pt, qt)
△=
∫ T

0
L(t, pt, qt, p

′
t, q

′
t) dt (3.18)
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where the integrand is given by

L(t, pt, qt, p
′
t, q

′
t)

△= γ1
2

[
σ q′

t − ϵ tanh
(
ϵt

σ

)
qt

]2

+1
2
ξ

(
csch

(
ϵt

σ

)
p′

t

)2
− ϵ

σ
sech

(
ϵt

σ

)
p′

t

+γ2
2

[
σ q′

t + ϵ tanh
(
ϵt

σ

)
(1 − qt)

]2

+ ϵ2

σ2 tanh
(
ϵt

σ

)
sech

(
ϵt

σ

)
pt. (3.19)

Before stating the main result, we give a few auxiliary lemmas.

Lemma 3.4. There exist unique optimal at, pt, and qt such that

min
at

{A(t, at) : at satisfies (3.6)} = min
(pt,qt)

{
AL(t, pt, qt) : pt, qt satisfy (3.17)

}
(3.20)

The proof of Lemma 3.4 is presented in Section 7.2. To find the minimizers (pt, qt) in (3.16) we
use the method of Lagrange multipliers taking into account the free boundary conditions naturally
appearing. To this end, we define

Lλ(t, pt, qt, p
′
t, q

′
t)

△= L(t, pt, qt, p
′
t, q

′
t) + λ(t)

[
q′

t + g′
(

csch
(
ϵt

σ

)
p′

t

)]
(3.21)

where λ(t) designates the time dependent Lagrange multiplier. We first obtain the following lemma.

Lemma 3.5. Consider the functional

J(pt, qt)
△=
∫ T

0
Lλ(t, pt, qt, p

′
t, q

′
t) dt. (3.22)

where Lλ has been defined in Eq. (3.21). The minimizer (pt, qt) of J satisfies

∂L

∂pt
− d

dt

(
∂L

∂p′
t

)
− d

dt

(
λ(t) g′′

(
csch

(
ϵt

σ

)
p′

t

)
csch

(
ϵt

σ

))
= 0 (3.23)

∂L

∂qt
− d

dt

(
∂L

∂q′
t

)
− λ′(t) = 0 (3.24)

∂L

∂p′
t

∣∣∣
t=T

+ λ(T ) g′′
(

csch
(
ϵT

σ

)
p′

T

)
csch

(
ϵT

σ

)
= 0 (3.25)

∂L

∂q′
t

∣∣∣
t=0

+ λ(0) = 0 (3.26)

q′
t = −g′

(
csch

(
ϵt

σ

)
p′

t

)
, t > 0 (3.27)

The proof of Lemma 3.5 is presented in Section 7.2.
In what follows, we assume that

g(t) = ξ
t2

2
. (3.28)
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Remark: The assumption of quadratic penalty function is only done to get explicit expressions for
the optimal action and contract. A similar analysis can be carried out with a different choice of
penalty function as long as it satisfies assumption (3.1).

Eq. (3.28) turns (3.27) into

p′
t = −1

ξ
sinh

(
ϵt

σ

)
q′

t (t > 0). (3.29)

Note that by using Eqs. (3.4), (3.5) and (3.17), we may rewrite Eq. (3.6) as

αt = −σ2

vt
q′

t + qt (3.30)

In what follows, we set

β
△=
(

ϵ2ξ (γ1 + γ2)
(γ1 + γ2)σ2ξ + 1

)1/2

.

Employing Lemma 3.5 we obtain the following key result.

Proposition 3.2. The (unique) minimizer of (p∗
t , q

∗
t ) of the functional AL defined by Eq. (3.18) is

given by

q∗
t = γ1

γ1 + γ2
sech (βT ) cosh (βt) + γ2

γ1 + γ2
− sech

(
ϵT

σ

)
cosh

(
ϵt

σ

)
(3.31)

and

p∗
t =

βγ1σsech(βT )
(
−ϵ cosh

(
ϵt
σ

)
sinh(βt) + βσ cosh(βt) sinh

(
ϵt
σ

))
(γ1 + γ2)(ϵ2 − β2σ2)ξ

+
sech

(
ϵT
σ

) (
σ sinh

(
2ϵt
σ

)
− 2ϵt

)
4ξσ

(3.32)

The proof of Proposition 3.2 is presented in Section 7.2. We are now ready to state the theorem
giving the optimal contract and misreporting action.

Theorem 3.1. The (unique) optimal misreporting action aHA
t is represented by

aHA
t = − γ1β

(γ1 + γ2)ξ
sech (βT ) sinh(βt) + ϵ

σξ
sech

(
ϵT

σ

)
sinh

(
ϵt

σ

)
. (3.33)

Moreover, the corresponding αHA
t is uniquely given by

αHA
t = γ2

γ1 + γ2
+ γ1
γ1 + γ2

sech(βT )
ϵ tanh

(
ϵt
σ

) [−βσ sinh (βt) + ϵ cosh(βt) tanh
(
ϵt

σ

)]
(3.34)

and the optimal contract can be expressed as

CT = − 1
γ1

log(−R0) + d+
∫ T

0
αHA

t dx̂0
t (3.35)

where d △= d1+d2+d3 is the constant that makes the manager’s expected utility equal to his reservation
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value, with

d1
△= γ1

2

∫ T

0
α2

t

v2
t

σ2dt

=
γ1

(
βTγ2

1(ϵ2 − β2σ2)sech2(βT ) + γ1
(
ϵ2(γ1 + 4γ2ϵ) + β2γ1σ

2) tanh(βT )
)

4β(γ1 + γ2)2

+
γ1
(
2βϵ

(
γ2

2Tϵ− (γ1 + γ2)2 σ tanh
(

ϵT
σ

)))
4β(γ1 + γ2)2 (3.36)

and

d2
△=

∫ T

0
αt
vt

σ

(
−σθϵ

vt
− aHA

t

σ
+ x̂0

t − x̂aHA

t

σ

)
dt (3.37)

and

d3
△=

∫ T

0

ξ

2
(aHA

t )2dt

= βγ2
1sech2 (βT ) (sinh (2βT ) − 2βT )

8ξ(γ1 + γ2)2 +
ϵ
(
σ tanh

(
ϵT
σ

)
− ϵT sech2

(
ϵT
σ

))
4ξσ2

+
βγ1ϵ

(
βσ tanh

(
ϵT
σ

)
− ϵ tanh (βT )

)
8ξ(γ1 + γ2) (ϵ2 − β2σ2)

(3.38)

where p∗
t is defined in (3.32).

Proof. For 0 ≤ t ≤ T , we set p∗
t and q∗

t as in (3.4) and (3.5). By the application of Lemma 3.4 and
Proposition 3.2, we have that aHA

t minimizes the functional A(t, at) as long as the pair (p∗
t , q

∗
t ) solves

the optimization (minimization) problem defined by Eq. (3.22) and Eq. (3.23)-(3.27). Application
of Lemma 3.2 yields that the solution q∗

t is given by Eq. (3.31). Differentiating the expression for q∗
t

given in Eq. (3.31), we obtain Eq. (7.52), which immediately implies that the optimal misreporting
action aHA

t is

aHA
t = −1

ξ
(q∗

t )′ = − γ1β

(γ1 + γ2)ξ
sech(βT ) sinh(βt) + ϵ

σξ
sech

(
ϵT

σ

)
sinh

(
ϵt

σ

)
(3.39)

Plugging the expression for aHA
t inside Eq. (3.6), we obtain after straightforward calculations that

the optimal αHA
t is

αHA
t = −σ2

vt
(q∗

t )′ + q∗
t

= γ1
γ1 + γ2

sech(βT )
ϵ tanh

(
ϵt
σ

) [−βσ sinh (βt) + ϵ cosh(βt) tanh
(
ϵt

σ

)]
+ γ2
γ1 + γ2

(3.40)
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Using the expression for αHA
t we obtain∫ T

0
αHA

t dx̂0
t =

∫ T

0

(
γ1

γ1 + γ2

sech(βT )
ϵ tanh

(
ϵt
σ

) [−βσ sinh (βt) + ϵ cosh(βt) tanh
(
ϵt

σ

)]
+ γ2
γ1 + γ2

)
dx̂0

t

Recall that the expression for the optimal contract is given by Eq. (3.12). Using the expression for
αHA

t , we obtain that
γ1
2

∫ T

0
α2

t

v2
t

σ2dt (3.41)

evaluates to d1 given in Eq. (3.36). Expressing Eq. (2.12) in terms of dẐa
t , for any function at, we

obtain
dẐa

t = σ

vt
dx̂0

t − σθϵ

vt
dt− at

σ
dt+ x̂0

t − x̂a
t

σ
dt (3.42)

The expression for x̂0
t − x̂a

t has been derived in Eq. (2.12) and so we use

p∗
t =

∫ t

0
sinh

(
ϵs

σ

)
aHA

s ds (3.43)

given in Eq. (3.32) to compute x̂0
t −x̂aHA

t
σ . Consequently, we have

∫ T

0
αt
vt

σ

(
−σθϵ

vt
− aHA

t

σ
− x̂0

t − x̂aHA

t

σ

)
dt (3.44)

leading to d2 in Eq. (3.37). Next, we compute

GT =
∫ T

0

ξ

2

(
aHA

t

)2
dt (3.45)

yielding d3 given in Eq. (3.38). Altogether, we obtain that the optimal contract is given by Eq. (3.35).

Remark 3.2. Verification of Assumptions 2.1 and 3.2. It can be easily verified that Assump-
tion 2.1 is satisfied, given that both aHA

t and αHA
t are smooth (infinitely differentiable) functions.

This results from the fact that q∗
t and p∗

t obtained in (3.31) and (3.32) are smooth, and thus all cal-
culations carried out in this section are fully justified. We next show that Assumption 3.2 is satisfied.
Observe that

β2 = (γ1 + γ2) ϵ2
1
ξ + (γ1 + γ2)σ2 <

(γ1 + γ2) ϵ2

(γ1 + γ2)σ2 = ϵ2

σ2 .

Notice that since βσ ≤ ϵ, we observe that tanh(βt) ≤ tanh
(

ϵt
σ

)
and so, for all t ≥ 0, we have

sinh(βt) = cosh(βt) tanh(βt) ≤ cosh(βt) tanh
(
ϵt

σ

)
.
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Therefore,

αHA
t ≥ γ2

γ1 + γ2

sech(βT )
tanh

(
ϵt
σ

) (sinh(βt) − sinh(βt)) + γ2
γ1 + γ2

= γ2
γ1 + γ2

(3.46)

from which we infer that αHA
t ≥ 0 for all t ≥ 0, and thus Assumption 3.2 is satisfied.

4 Risk-Sharing
We now study the risk-sharing problem of maximizing the joint welfare

J(T ) := J1(T ) + λJ2(T ) = EP[U1(CT −GT )] + λEP[U2(x̂0
T − CT )] ,

where λ is a given constant representing the relative risk-sharing level. We maintain the assumption
that both U1(x) and U2(x) are exponential and given by Eq. (3.3). The above is a classical risk-
sharing problem, or joint welfare problem, resulting in the so-called first-best solution. Here, in
addition to sharing CT , the shareholders and the manager also have to find the jointly optimal
choice of the misreporting level a, which can be contracted upon. Differently from the hidden action
case, we don’t restrict the contracts to be linear, rather, we find the optimal contract to be linear.
More precisely, taking a derivative with respect to CT inside the expectation and setting it equal
to zero gives us the classical Borch rule for risk-sharing, that the ratio of the marginal utilities is
constant:

U ′
1 (CT −GT ) = λU ′

2

(
x̂0

T − CT

)
. (4.1)

As the utilities functions of shareholders and manager are exponential, we get the following expression
for the optimal risk-sharing contract, for an appropriate constant c,

CT = c+ αRS x̂0
T + γ1

γ1 + γ2
GT (4.2)

where
αRS = γ2

γ1 + γ2
(4.3)

As we only allow deterministic control actions at, GT is deterministic. Thus, the above expression
for CT is in agreement with a standard result that shows that the optimal risk-sharing fraction is
determined by the relative size of the risk aversion parameters γ1, γ2. We also see that the fact that
the outcome process is not observed does not play a role here, that is, the PPS does not depend on
the observation noise σ. Compared to the previous hidden action case, PPS here agrees with PPS
there in the special case of σ or ξ being infinite (see also Section 5 for more details). Under the
probability measure P, the dynamics of the model are

dxt = θϵdt+ ϵdWt

dyt = [xt + at]dt+ σdZt (4.4)
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where Zt is a Ft-Brownian motion. The information structure is the same as in the hidden action
case. The dynamics of x̂t are given by the Kalman-Bucy filter as

dx̂t = θϵdt+ vt

σ
dẐt (4.5)

where Ẑt is the filter innovation process, a (Fy
t ,P)-Brownian motion. The market, instead, does not

know the exact level of misreporting, and believes that the observation model is

dxt = θϵdt+ ϵdWt

dyt = xtdt+ σdZ0
t (4.6)

where dZ0
t = dZt + at

σ dt. By an analogous reasoning used in the derivation of Eq. (2.11), we obtain

Ẑt = Ẑ0
t −

∫ t

0

as

σ
ds+

∫ t

0

x̂0
s − x̂s

σ
ds (4.7)

and, consequently, x̂0
t may be expressed in terms of Ẑt as

dx̂0
t = ϵθdt+ vt

σ
dẐt + vtat

σ2 dt− vt

σ2

(
x̂0

t − x̂t

)
dt

(4.8)

Using (4.2) and substituting back into J(T ), we see that shareholders and manager maximize over
a the expression

−
(

1 + γ1
γ2

)
E
[
exp

{
−γ1c− γ1γ2

γ1 + γ2
(x̂0

T −GT )
}]

.

This is now a standard stochastic control problem, for which it is known that the optimal control at

is deterministic (and it can be verified by solving the HJB equation). In order to solve it, denote

Γ = γ1γ2
γ1 + γ2

.

For concreteness, we assume again quadratic penalty a, i.e.

GT = ξ

∫ T

0

a2
t

2
dt.

Then, the optimization problem boils down to maximizing over at ≥ 0

I(at) =
∫ T

0

{
θϵ+ 1

σ2atvt − ξ
a2

t

2
− 1

2
Γ v

2
t

σ2 − vt

σ

x̂0
t − x̂t

σ

}
dt (4.9)

which, by Eq. (2.12), simplifies to

I(at) =
∫ T

0

{
θϵ+ 1

σ2atvt − ξ
a2

t

2
− 1

2
Γ v

2
t

σ2 − ϵ

σ2
vt
∫ t

0 sinh
(

ϵs
σ

)
as ds

σ cosh
(

ϵt
σ

) }
dt. (4.10)

We make the following

Assumption 4.3. at is non-negative and continuously differentiable in the interval [0, T ].
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Set
pt

△=
∫ t

0
sinh

(
ϵs

σ

)
as ds ≥ 0.

as before. Then
p′

t = sinh
(
ϵt

σ

)
at. (4.11)

Moreover, p0 = 0 and pT is a free boundary condition. Maximizing I(at) over at amounts to
minimizing

Ĩ(pt)
△=
∫ T

0
L̃(t, pt, p

′
t) dt (4.12)

where

L̃(t, pt, p
′
t)

△= −θϵ− ϵ

σ
sech

(
ϵt

σ

)
p′

t + ξ

2

(
csch

(
ϵt

σ

))2
(p′

t)2

+1
2
ϵ2Γ

(
tanh

(
ϵt

σ

))2
+ ϵ2

σ2 tanh
(
ϵt

σ

)
sech

(
ϵt

σ

)
pt (4.13)

Lemma 4.6. There is a minimizer pt of Ĩ defined in (4.12) and maximizer at of I(at) defined in
(4.10).

The proof of Lemma 4.6 is presented in Section 7.3. We also have the following

Lemma 4.7. The minimizer pt of Ĩ is given by

pt =
sech

(
ϵT
σ

)
4σξ

(
σ sinh

(2ϵt
σ

)
− 2ϵt

)
. (4.14)

The proof of Lemma 4.7 is presented in Section 7.3. Using Lemma 4.6 and Lemma 4.7 we end
up with

Theorem 4.2. The maximizer aRS
t of I(at) in (4.10) is

aRS
t = ϵ

ξσ
sech

(
ϵT

σ

)
sinh

(
ϵt

σ

)
. (4.15)

Moreover, the optimal contract is given by

CT = c+ αRS x̂0
T + γ1

γ1 + γ2

ϵ

4ξσ2

(
σ tanh

(
ϵT

σ

)
− ϵT sech

(
ϵT

σ

)2
)
. (4.16)

Proof. Differentiating pt in Eq. (4.14), we obtain (7.55), thus we immediately arrive at Eq. (4.15).
Plugging the derived expression for aRS

t inside Eq. (4.2), we obtain the optimal contract as in Eq.
(4.16).

Remark 4.3. Verification of Assumption 4.3. Looking at Eq. (4.15), we can immediately see
that aRS

t is an infinitely differentiable function, and therefore continuously differentiable.

Let us now denote by V the following quantity

V = exp
{
K1 +K2 +K3

4 (γ1 + γ2)2 σ2ξ

}
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where
K1 = γ1γ2

(
−T (γ1 + γ2 − 2)(γ1 + γ2)ϵ2sech2

(
Tϵ

σ

))
K2 = γ1γ2σ (−2(2x0(γ1 + γ2) + ϵT (2θ(γ1 + γ2) − γ1γ2ϵ)))σξ

K3 = γ1γ2σϵ

(
γ2

1 + (γ2 − 2)γ2 − 2γ1
(
1 − γ2 + γ2σ

2ξ
)

tanh
(
ϵT

σ

))
Plugging Eq. (4.16) and Eq. (4.15) into the manager utility, we find that

J1(T ) = −e−γ1cV. (4.17)

Similarly, we obtain that, at the optimum, the shareholders utility is given by

J2(T ) = −eγ2cV (4.18)

Using Eq. (4.1), we can then deduce that the constant c is given by

c = 1
γ1 + γ2

log
(
γ1
λγ2

)
. (4.19)

5 Comparative Statics
In this section we discuss, from the economical perspective, the results obtained in the earlier sections.
Section 5.1 describes the optimal PPS and misreporting level as functions of time, Section 5.2 analyzes
the optimal contract, Section 5.3 does a comparative statics analysis for the optimal misreporting
action, and Section 5.4 compares the shareholders and manager utilities in hidden action and risk-
sharing settings.

5.1 Pay-per-performance sensitivity and misreporting

We study the dependence on time of the optimal pay-per-performance sensitivity and the optimal
misreporting. Figure 1 shows that they both increase over time. Therefore, the shareholders find
it optimal to induce the manager to gradually increase the level of misreporting over time, and
they achieve that by offering him a higher pay-per-performance sensitivity as time progresses. This
suggests that in a context in which outside investors cannot correctly infer the level of misreporting,
early auditing will prevent the occurrence of high levels of accounting irregularities.

5.2 Contracts

Differently from Holmstrom and Milgrom (1987), in the hidden action case we find that noisy
observations lead to contracts which are dependent on the full path of the observation process. In
the risk-sharing case, instead, the pay-per-performance sensitivity only depends on the relative size
of the risk aversion parameters γ1 and γ2, and, additionally, it is independent of σ. Thus, the fact
that the actual outcome process is unobserved does not play any role. Comparing the expressions
for the optimal pay-per-performance sensitivity obtained in the hidden action case (see Eq. (3.34))
and risk-sharing case (see Eq. (4.3)), we obtain

αHA
t = αRS

t + γ1
γ1 + γ2

sech(βT )
ϵ tanh

(
ϵt
σ

) [−βσ sinh (βt) + ϵ cosh(βt) tanh
(
ϵt

σ

)]
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Figure 1: The parameters common to all graphs are σ = 0.1, ϵ = 0.3, γ1 = 0.7, γ2 = 0.3, T = 1.
The left graph refers to the pay-per-performance sensitivity over time, while the right graph to the
misreporting level over time.

where we recall that αHA
t and αRS

t denote, respectively, the pay-per-performance sensitivity in the
hidden action and risk-sharing setting. As shown in Eq. (3.46), we have αHA

t > αRS
t . This is a

familiar result from existing models: when action cannot be contracted upon, the manager needs
extra incentives from the shareholders in terms of compensation in order to apply desired action.
We also find

lim
ϵ→0

αHA
t = 1

lim
γ1→0

αHA
t = lim

γ1→0
αRS

t = 1

Thus, if the manager does not care about risk the whole firm is transferred to him, a familiar result
in the existing literature. In the hidden action case, this also happens in the case when the outcome
process becomes constant and known to everyone, ϵ ≈ 0. (In this case there is no risk to anyone,
and zero action, so only non-risky cash amount is divided, and it does not really matter who owns
the firm). We also have

lim
σ→0

αHA
t = γ2

γ1 + γ2
+ γ1
γ1 + γ2

cosh
(
ϵ2ξt(γ1 + γ2)

)
sech

(
ϵ2ξT (γ1 + γ2)

)
lim

σ→∞
αHA

t = γ2
γ1 + γ2

.

Therefore, for low levels of accounting noise the pay-per-performance sensitivity in the hidden action
setting remains strictly higher than in the risk-sharing setting (this is why, as we shall see below, the
optimal hidden action becomes negative for small σ). For high levels of accounting noise, instead,
we have that the pay-per-performance is the same in risk-sharing and hidden action case. This is
not surprising, as the infinite noise impedes any possibility of giving meaningful incentives. We also
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Figure 2: Left panel: αHA
t versus σ for two different levels of ϵ, ϵ = 0.1, and ϵ = 0.2. The parameter

choices are γ1 = 0.3, γ2 = 0.1, ξ = 0.2, t = 0.5, T = 1. Right panel: αHA
t versus σ for two different

misreporting penalties, ξ = 0.1, and ξ = 0.3. The parameter choices are γ1 = 0.3, γ2 = 0.1, ϵ = 0.1,
t = 0.5, T = 1.

find

lim
ξ→0

αHA
t = 1

lim
ξ→∞

αHA
t = αRS

t .

In case of very large penalties, the pay-per-performance sensitivities are the same. This is because, in
the hidden action setting, the shareholders know that the manager will not apply any misreporting
action due to the high penalty incurred. On the opposite extreme, when the penalty is very small,
then the shareholders know that the manager will not be blocked by severe misreporting penalties,
and thus they try to give him the highest incentives to apply the misreporting action. We find
that αHA

t is a decreasing function of the project scale factor ϵ (proof presented in Section 7.4).
This may be explained observing that, for a contract consisting of cash and a performance related
compensation depending linearly on x̂0

t , we have that increasing ϵ is like increasing portfolio holdings
of the manager in the risky asset x̂0

t relative to cash. According to this interpretation, high α and
high ϵ have the same effect on the manager, and result in the manager having higher exposure to the
risky part of the compensation. Therefore, if ϵ goes up, then αHA

t should go down to compensate.
It is seen from Fig. 2 that αHA

t decreases as the accounting noise σ increases. This is consistent
with the fact that, as σ increases, x̂0

t becomes “closer” to x̂a
t , for any fixed a, and there is less benefit

of giving to the manager incentives to apply the misreporting action. It is also seen from Fig. 3
that αHA

t decreases as the penalty ξ increases, since the incentives are less efficient. Moreover, PPS
is much more sensitive to the risk aversion level γ1 of the manager and very mildly affected by the
risk aversion level γ2 of the shareholders. More precisely, αHA

t decreases as γ1 increases, because
the manager does not like risk. It increases (but at a slower rate) as the shareholders’ risk aversion
increases. This is because the shareholders then like risk less, and want to transfer it to the manager.
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Figure 3: The parameters used in all panels are ϵ = 0.5, σ = 0.1, t = 0.5, T = 1. Top panel:
manager’s misreporting level versus ξ for three different choices of (γ1, γ2). Bottom left panel:
manager’s misreporting level versus γ1 for a fixed level of γ2 = 0.1, and ξ = 0.1. Bottom right panel:
manager’s misreporting level versus γ2 for a fixed level of γ1 = 0.1, and ξ = 0.1.
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5.3 Misreporting action

We now perform analysis of the optimal misreporting action. First, as mentioned above, unlike in the
classical Holmstrom and Milgrom (1987) model, the manager’s optimal misreporting action is time
dependent in both the risk-sharing and hidden action framework. Next, comparing the expressions
for the optimal aHA

t obtained in the hidden action case (see Eq. (3.33)) and aRS
t computed in the

risk-sharing case (see Eq. (4.15)), we can immediately establish that

aHA
t = aRS

t − γ1β

(γ1 + γ2)ξ
sech (βT ) sinh (βt)

Thus, we have aHA
t < aRS

t , which is expected, as in the risk-sharing case the optimal action is
chosen to maximize the joint utility of shareholders and manager, whereas in the hidden action
case the shareholders have to induce the manager to apply a given misreporting action by offering
him an appropriate contract. Consistently with the intuition, we have that aHA

t and aRS
t are both

decreasing in the size of penalty, starting from at being infinity when there is zero penalty (in this
case the manager would only benefit from misreporting), and converging to zero when the penalty ξ
goes to infinity.

We find that, for both risk-sharing and hidden action, aHA
t and aRS

t approach zero when σ goes to
infinity. This is because increase in compensation that the manager would obtain biasing the output
process by at would be fully absorbed by the high level of accounting noise σ. Mathematically, this
can be seen from Eq. (2.12) of Lemma 2.2, showing that for a fixed misreporting action at,

lim
σ→∞

x̂0
t = x̂a

t .

Therefore, the manager would pay a penalty for misreporting without getting any benefit from it.
In other words, “fooling the market” is not possible because the filter estimate x̂0

t coincides with the
market estimate.

When the observation noise is small, we obtain the following limiting behavior

lim
σ→0+

aHA
t = − γ1ϵ√

(γ1 + γ2)ξ
sech

(
ϵT
√

(γ1 + γ2)ξ
)

sinh
(
ϵt
√

(γ1 + γ2)ξ
)

lim
σ→0+

aRS
t = 0 (5.1)

This shows that there is a tradeoff between the benefit of the manager and the shareholders. While
the first always benefits from higher misreporting (given a fixed cost), the latter may lose in utility
by paying the manager a higher proportion of the market value x̂0

t . The limits in Eq. (5.1) show
that in the risk-sharing case the best joint action for small noise is not to introduce misreporting.
In the hidden action case, where the shareholders induce the optimal misreporting action of the
manager, we can see that it is optimal to induce him even to bias the output process downwards,
with negative a, in which case the shareholders pay lower compensation because the market value is
lower. Further analysis shows that, for a fixed ϵ (or fixed σ), the optimal misreporting level switches
from increasing to decreasing after a given value of σ (respectively ϵ). This can be seen from figure
4, which also shows that the level of σ (respectively ϵ), at which the misreporting amount starts
decreasing depends on the project volatility ϵ (respectively σ), but not much on the penalty ξ, which
mainly drives the size of the misreporting amount. We also find the following limiting behavior
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Figure 4: All plots are produced using γ1 = 0.3, γ2 = 0.1, t = 0.5, and T = 1. Top left panel:
manager’s misreporting level versus σ for two different levels of ϵ, ϵ = 0.1, and ϵ = 0.2. We fix
ξ = 0.2. Top right panel: manager’s misreporting level versus σ for two different misreporting
penalties, ξ = 0.1, and ξ = 0.5. We fix ϵ = 0.1. Bottom left panel: manager’s misreporting level
versus ϵ for two different levels of σ, σ = 0.1, and σ = 0.2. We fix ξ = 0.2. Top right panel: manager’s
misreporting level versus ϵ for two different misreporting penalties, ξ = 0.1, and ξ = 0.5. We fix
σ = 0.1.
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Figure 5: The parameters used in all panels are ϵ = 0.5, σ = 0.1, t = 0.5, T = 1, ξ = 0.1. Left
panel: manager’s misreporting level versus γ1 for a fixed level of γ2 = 0.1. Right panel: manager’s
misreporting level versus γ2 for a fixed level of γ1 = 0.1.

lim
ϵ→0

aHA
t = lim

ϵ→0
aRS

t = 0

lim
γ1→0

aHA
t = aRS

t .

Thus, the two actions are also the same and consist in truthful revelation in case ϵ → 0, i.e the
outcome process xt = x0 is constant and known to everyone. In that case there is no beneficial
effect of misreporting to manager and shareholders. Moreover, for a very low risk averse manager,
the optimal non-contractible misreporting action approaches the joint optimal misreporting action.
This is because, as we have seen above, and as it is well known in existing models, when the manager
does not care about risk the whole firm is transferred to the manager, αt ≡ 1.

It is seen from Fig. 5 that aHA
t is decreasing in γ1. This is expected because a more risk-averse

manager is less inclined to misreport due to the penalty incurred. By the same token, since everything
is driven by the relative size of risk aversions, the amount of misreporting increases if the shareholders
are more risk averse. More precisely, the more risk averse shareholders are, the higher percentage of
the firm they give to the manager, who then has incentives to misreport more.

5.4 Expected utility of Shareholders and Manager

We compare the expected utilities of shareholders and manager in the risk-sharing and hidden action
setting. First, we fix the reservation utility of the manager to R0 in both the hidden action and risk-
sharing framework, and measure how the shareholders utility changes. This results in choosing the
relative risk-sharing level λ, so that the manager utility in the risk-sharing case satisfies J1(T ) = R0.
Using Eq. (4.17), we have that this is achieved if

λ = γ1
γ2

(
−R0
V

)1+ γ2
γ1
.
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Figure 6: The parameter choices are: ϵ = 0.2, σ = 0.1, θ = 0.5, γ1 = 0.3, γ2 = 0.1, x0 = 1, ξ = 0.5,
T = 1. Left Panel: Shareholders utility under both hidden action (HA) and risk-sharing (RS) as a
function of the reservation utility R0 of the manager. Right Panel: Manager reservation utility R0
under both hidden action (HA) and risk-sharing (RS) as a function of the shareholders utility x.

Under this choice of λ, it is easily seen that the shareholders utility in the risk-sharing framework is
given by

J2(T ) = −
(

−R0
V

)− γ2
γ1
V.

We have that the shareholders utility in the hidden action setting is given by Eq. (3.13), evaluated
using the optimal contract and misreporting action, fully specified by Eq. (3.33) and Eq. (3.34). In
particular, for a specified R0, we have

E[U2(x̂0
T − CT )] = −(−R0)− γ2

γ1 exp
{

−γ2(x0 + θϵT ) + γ2(d1 + d3 −K1 +K3) + 1
2
γ2

2K2

}
(5.2)

where d1 and d3 are given by Eq. (3.36) and Eq. (3.38), respectively. We have

K1 =
∫ T

0
at
vt

σ2dt, K3 =
∫ T

0

vt

σ

ϵ

σ2 cosh
(

ϵt
σ

)p∗
tdt

with p∗
t given by Eq. (3.32) and

K2 =
∫ T

0

(
vt

σ
+ 1
γ1
Ỹ a

t

)2
dt

=
γ2

1sech2 (βT )
(

4βTϵ2 − 2β3σ2T + 2βϵ2T cosh (2βT ) +
(
β2σ2 − 3ϵ2

)
sinh (2βT )

)
4β(γ1 + γ2)2

As expected, the left panel of Fig. 6 shows that the shareholders have a smaller utility when the
misreporting level cannot be contracted upon. Moreover, the shareholders utility decreases as the
reservation utility of the manager increases.

Next, we fix the shareholders utility to x in both risk-sharing and hidden action framework, and
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measure how the manager utility changes. This requires choosing constant λ so that the shareholders
utility in the risk-sharing case satisfies J2(T ) = x. Using Eq. (4.18), we have that this is achieved if

λ = γ1
γ2

(
− x

V

)−
(

1+ γ1
γ2

)

Under this choice of λ, it is easily seen that the manager utility in the risk-sharing framework is
given by

J1(T ) = −
(

− x

V

)− γ1
γ2
V

Moreover, if the shareholders utility is x, we deduce from Eq. (5.2) that

R0 = −
(

−x exp
{
γ2(x0 + θϵT ) − γ2(d1 + d3 −K1 +K3) − 1

2
γ2

2K2

})− γ1
γ2

which corresponds to the manager utility in the hidden action framework due to Eq. (3.10). Com-
paring the left and right panel of Fig. 6, we can clearly see that the manager utility is smaller than
the shareholders utility due to the manager being more risk averse. Moreover, while for smaller
values of shareholders utility the manager’s utility is similar in both risk-sharing and hidden action
framework, we have that as the shareholders utility gets larger the manager’s utility decreases faster
if misreporting cannot be contracted upon.

6 Conclusions
This paper studied a continuous time model of the firm’s value process, where the true outcome
can only be observed with noise, and is optimally biased by the manager. More specifically, we
consider the situation where both shareholders and manager have unbiased estimates of the actual
output process, while the rest of the market is unable to estimate the level of bias introduced by the
manager, and therefore does not factor in the correct misreporting level when estimating the process
value.

We have shows that the computation of the optimal contract and of the optimal misreporting
action applied by the manager can be computed as the solution of a constrained variational calculus
problem, for which we provide a closed form solution by means of a methodology that is novel to this
type of problems. In order to test the robustness of our conclusions, we considered the risk-sharing
case and solved for the general optimal contract. We found it to be linear, with the optimal risk-
sharing fraction determined by the relative size of the risk aversion parameters of the shareholders and
the manager. We add to our theoretical results performing a detailed comparative statics analysis.
Such analysis reveals that both the optimal misreporting action and pay-per-performance sensitivity
increase over time, and that higher levels of observational noise reduce the benefits that both manager
and shareholders extract from the market through the misreporting action. As expected, when the
cost of misreporting increases, smaller incentives are offered by the shareholders, and smaller levels
of misreporting are applied by the manager.

Mathematically, it is an open question whether our results hold true if nonlinear contracts are
allowed, or if stochastic action is allowed. Economically, it would be of interest to see how much
misreporting would be reduced in the presence of occasional (random) auditing that would reveal
existence of misreporting and change the market value of the firm.
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7 Proofs of Lemmas and Propositions

7.1 Proofs for Filtering Estimates

We prove Lemma 2.1 first.

Proof. Note that Eq. (2.8) gives
dx̂0

s = θϵds+ vs

σ
dẐ0

s (7.1)

which, multiplied with σ
vs

and integrated from 0 to t, gives (2.10). Using Eq. (2.3) and Eq. (2.7), we
get

Ẑa
t = Z0

t − 1
σ

∫ t

0
asds+ 1

σ

∫ t

0
[xs − x̂a

s ] ds (7.2)

Ẑ0
t = Z0

t + 1
σ

∫ t

0
[xs − x̂0

s] ds (7.3)

Subtracting Eq. (7.3) from Eq. (7.2), we arrive at Eq. (2.11). Using (2.10) and (2.11), we obtain
Eq. (2.12), which concludes the lemma.

We prove Lemma 2.2 next.

Proof. Let us denote
ωt = x̂0

t − x̂a
t (7.4)

From Eq. (2.11), we have
d

dt

(
Ẑa

t − Ẑ0
t

)
= −at

σ
+ x̂0

t − x̂a
t

σ

or, equivalently,
x̂0

t − x̂a
t = σ

d

dt

(
Ẑa

t − Ẑ0
t

)
+ at (7.5)

Using Eq. (2.8), we get

dx̂a
t

dt
= θϵ+ vt

σ

dẐa
t

dt
(7.6)

dx̂0
t

dt
= θϵ+ vt

σ

dẐ0
t

dt
(7.7)

Using Eq. (7.6) and Eq. (7.7) we obtain

d

dt

(
x̂a

t − x̂0
t

)
= vt

σ

d

dt

(
Ẑa

t − Ẑ0
t

)
(7.8)

and plugging Eq. (7.8) into Eq. (7.5), we obtain

x̂0
t − x̂a

t = σ

(
− σ

vt

d

dt

(
x̂0

t − x̂a
t

))
+ at (7.9)

From the definition of ωt in Eq. (7.4), and Eq. (7.9), we get the ordinary differential equation

ωt + σ2

vt
ω′

t = at (7.10)
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which may be rewritten as
vtωt + σ2ω′

t = atvt (7.11)

If we multiply Eq. (7.11) by exp
{

1
σ2
∫ t

0 vsds
}

, then we have

exp
{ 1
σ2

∫ t

0
vsds

}
vtωt + σ2ω′

t exp
{ 1
σ2

∫ t

0
vsds

}
= exp

{ 1
σ2

∫ t

0
vsds

}
atvt (7.12)

which can be rewritten as

d

dt

(
σ2ωt exp

{ 1
σ2

∫ t

0
vsds

})
= exp

{ 1
σ2

∫ t

0
vsds

}
atvt (7.13)

Using the expression for vt given in Eq. (2.9), we obtain

1
σ2

∫ t

0
vsds = ln

(
cosh

(
ϵt

σ

))
Hence,

exp
{ 1
σ2

∫ t

0
vsds

}
= cosh

(
ϵt

σ

)
and Eq. (7.13) implies

d

ds

(
σ2 ωs cosh

(
ϵs

σ

))
= cosh

(
ϵs

σ

)
ϵ σ

sinh
(

ϵs
σ

)
cosh

(
ϵs
σ

) as (7.14)

Integrating Eq. (7.14) from 0 to t, we get

ωt =
∫ t

0 ϵ σ sinh
(

ϵs
σ

)
as ds

σ2 cosh
(

ϵt
σ

) =
ϵ
∫ t

0 sinh
(

ϵs
σ

)
as ds

σ cosh
(

ϵt
σ

)
which yields the result.

7.2 Proofs for the Hidden Action Section

We provide the proof of Lemma 3.3 first.

Proof. For 0 < t ≤ T , we have that
p′

t = sinh
(
ϵt

σ

)
at

and thus, using at = p′
t

sinh( ϵt
σ ) , we can write the integrand as

S
(
t, pt, p

′
t

) △= 1
2
γ1α

2
t

v2
t

σ2 − θϵαt + g

(
p′

t

sinh
(

ϵt
σ

))− αt
vt

σ2

(
p′

t

sinh
(

ϵt
σ

) − ϵ

cosh
(

ϵt
σ

) pt

σ

)
. (7.15)

Since function g satisfies Eq. (3.1), we have

lim
p′

t→∞

S (t, pt, p
′
t)

p′
t

= ∞.
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Moreover, notice that p′
t 7→ S (t, pt, p

′
t) is a convex function. Also, since αt ≥ 0, we can write

S
(
t, pt, p

′
t

)
≥ h(p′

t)
△= 1

2
γ1α

2
t

v2
t

σ2 − θϵαt + g

(
p′

t

sinh
(

ϵt
σ

))− αt
vt

σ2

(
p′

t

sinh
(

ϵt
σ

)) (7.16)

and see that S (t, pt, p
′
t) is bounded by function h(p′

t), strictly convex in p′
t. Therefore, by Theorem

4.36 in Dacorogna (2007), the function pt yielding the minimum must satisfy the Euler-Lagrange
equation given by

d

dt

[
∂S

∂p′
t

]
= ∂S

∂pt
(7.17)

Using the expression for S in Eq. (7.15), we obtain from Eq. (7.15) that

d

dt

[
g′
(

p′
t

sinh
(

ϵt
σ

)) · 1
sinh

(
ϵt
σ

) − αt
vt

σ2
1

sinh
(

ϵt
σ

)] = αt
vt

σ2
1
σ

ϵ

cosh
(

ϵt
σ

) (7.18)

Moreover, as we have a free boundary at T , we have that

∂S

∂p′
t

∣∣∣
t=T

= 0.

More precisely, we get
g′(aT ) 1

sinh
(

ϵT
σ

) − αT
vT

σ2
1

sinh
(

ϵT
σ

) = 0. (7.19)

By substituting p′
t = sinh

(
ϵt
σ

)
at, we therefore rewrite (7.18) as

d

dt

[
g′ (at) · 1

sinh
(

ϵt
σ

) − αt
vt

σ2
1

sinh
(

ϵt
σ

)] = αt
vt

σ2
1
σ

ϵ

cosh
(

ϵt
σ

) (7.20)

From Eq. (7.19), we also obtain
αT

vT

σ2 = g′(aT ). (7.21)

Rewriting Eq. (7.20) as

d

dt

[
−αt

vt

σ2
1

sinh
(

ϵt
σ

)]− αt
vt

σ2
ϵ

σ cosh
(

ϵt
σ

) = − d

dt

[
g′(at)

sinh
(

ϵt
σ

)] (7.22)

and using the substitution
Θt = −αt

vt

σ2
1

sinh
(

ϵt
σ

) (7.23)

we obtain that (7.22) can be written as

Θ′
t + ϵ

σ
tanh

(
ϵt

σ

)
Θt = − d

dt

[
g′(at)

sinh
(

ϵt
σ

)] (7.24)
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Multiplying (7.24) by cosh
(

ϵt
σ

)
together with (7.23) gives

d

dt

[
−αt

vt

σ2
1

tanh
(

ϵt
σ

)] = − cosh
(
ϵt

σ

)
d

dt

[
g′(at)

sinh
(

ϵt
σ

)] . (7.25)

Integrating (7.25) from t to T , and recalling that, by definition, vt = ϵσ tanh
(

ϵt
σ

)
, we have

αt
ϵ

σ
− αT

ϵ

σ
= −

∫ T

t
cosh

(
ϵs

σ

)
d

ds

[
g′(as)

sinh
(

ϵs
σ

)] ds. (7.26)

Using integration by parts on the right hand side together with (7.21) we find the required result in
(3.6).

We now provide the proof of Lemma 3.4.

Proof. Note that Eq. (3.1) implies that we can find a convex function Q(p′
t, q

′
t) in the form of

Q(p′
t, q

′
t) = c1

(
(p′

t)2 + (q′
t)2
)

− ϵ

σ
sech

(
ϵt

σ

)
p′

t + c2

for some c1 and c2 such that
L(t, pt, qt, p

′
t, q

′
t) ≥ Q(p′

t, q
′
t).

Hence, the function (p′
t, q

′
t) 7→ L(t, pt, qt, p

′
t, q

′
t) in (3.19) is superlinear as

lim
(p′

t,q′
t)→(∞,∞)

L(t, pt, qt, p
′
t, q

′
t)√

(p′
t)2 + (q′

t)2 = ∞.

and bounded by function Q, convex in (p′
t, q

′
t). Moreover, a straightforward calculation shows that

the map (p′
t, q

′
t) 7→ L(t, pt, qt, p

′
t, q

′
t) in (3.19) is strictly convex as its Hessian matrix having posi-

tive eigenvalues ξ
(
csch

(
ϵt
σ

))2 and (γ1 + γ2)σ2 is positive definite for t > 0. Furthermore, the map
(pt, qt, p

′
t, q

′
t) 7→ L(t, pt, qt, p

′
t, q

′
t) in (3.19) is convex as its Hessian matrix having nonnegative eigen-

values 0, ξ
(
csch

(
ϵt
σ

))2 and (γ1 +γ2)(σ2 +ϵ2
(
tanh

(
ϵt
σ

))2 is positive semi-definite for t > 0. Application
of Theorem 4.36 in Dacorogna (2007) leads to the conclusion that there is unique minimizers pt,
and qt of A in Eq. (3.14), which together with (3.16), yields the unique minimizer at.

We provide the proof of Lemma 3.5 next.

Proof. Suppose that (pt, qt) minimizes the functional J defined by Eq. (3.21). Therefore, any pertur-
bation (pt + δ1p̃t, qt + δ2q̃t) of (pt, qt) would imply

J(pt, qt) ≤ J(pt + δ1p̃t, qt + δ2q̃t)

where δ1 and δ2 are real numbers and p̃t and q̃t are differentiable functions on [0, T ] with

p̃0 = 0, q̃T = 0. (7.27)

Thus, (δ1, δ2) = (0, 0) is the critical point of the map (δ1, δ2) 7→ J(pt + δ1p̃t, qt + δ2q̃t). Therefore, we
have

∂

∂δ1
J(pt + δ1p̃t, qt + δ2q̃t)

∣∣∣
(δ1,δ2)=(0,0)

= 0, (7.28)
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and
∂

∂δ2
J(pt + δ1p̃t, qt + δ2q̃t)

∣∣∣
(δ1,δ2)=(0,0)

= 0. (7.29)

By (7.28) we have∫ T

0

(
∂L

∂pt
p̃t + ∂L

∂p′
t

p̃′
t + λ(t)

[
g′′
(

csch
(
ϵt

σ

)
p′

t

)
csch

(
ϵt

σ

)
p̃′

t

])
dt = 0 (7.30)

Application of integration by parts and using the free boundary αT give Equations (3.23) and (3.25).
Also, by (7.29) we have ∫ T

0

(
∂L

∂qt
q̃t + ∂L

∂q′
t

q̃′
t + λ(t)q̃′

t

)
dt = 0. (7.31)

Again using integration by parts and the free boundary β0 results in Equations (3.24) and (3.26).

Next, we provide the proof of Proposition 3.2.

Proof. We solve the system of Equations (3.23)-(3.27) in Lemma 3.5. To ease the notation we drop
the superscript HA in the proof. First, we differentiate L with respect to pt and p′

t, and obtain

∂L

∂pt
= ϵ2

σ2 tanh
(
ϵt

σ

)
sech

(
ϵt

σ

)
= − d

dt

(
ϵ

σ
sech

(
ϵt

σ

))
(7.32)

and
∂L

∂p′
t

= ξ

(
csch

(
ϵt

σ

))2
p′

t − ϵ

σ
sech

(
ϵt

σ

)
. (7.33)

Note that by Eq. (3.29) we have
p′

T = −1
ξ

sinh
(
ϵT

σ

)
q′

T . (7.34)

Moreover, Eq. (3.25) simplifies to

ξ

(
csch

(
ϵT

σ

))2
p′

T − ϵ

σ
sech

(
ϵT

σ

)
= −ξ λ(T ) csch

(
ϵT

σ

)
(7.35)

or, by using Eq. (7.34),
λ(T ) = 1

ξ
q′

T + ϵ

σξ
tanh

(
ϵT

σ

)
. (7.36)

Also, Eq. (3.23) is equivalent to

d

dt

[(
csch

(
ϵt

σ

))2
p′

t + csch
(
ϵt

σ

)
λ(t)

]
= 0 (7.37)

which by Eq. (3.29) can be written as

d

ds

[(
λ(s) − 1

ξ
q′

s

)
csch

(
ϵs

σ

)]
= 0. (7.38)
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Integrating Eq. (7.38) from t to T and using (7.36) we get

λ(t) = 1
ξ
q′

t + ϵ

σξ
sech

(
ϵT

σ

)
sinh

(
ϵt

σ

)
. (7.39)

which yields

λ′(t) = 1
ξ
q′′

t + ϵ2

σ2ξ
sech

(
ϵT

σ

)
cosh

(
ϵt

σ

)
. (7.40)

We next use Eq. (3.24) to obtain another expression for λ′(t). Differentiating L with respect to qt

and q′
t, we obtain

∂L

∂qt
=
(
γ1

[
σq′

t − ϵ tanh
(
ϵt

σ

)
qt

]
+ γ2

[
(1 − qt)ϵ tanh

(
ϵt

σ

)
+ σq′

t

])(
−ϵ tanh

(
ϵt

σ

))
(7.41)

and
∂L

∂q′
t

= σγ1

(
σq′

t − ϵ tanh
(
ϵt

σ

)
qt

)
+ σγ2

(
(1 − qt)ϵ tanh

(
ϵt

σ

)
+ σq′

t

)
(7.42)

Due to Eq. (3.26) we have

λ(0) = −∂L

∂q′
t

∣∣∣
t=0

= −σ2(γ1 + γ2)q′
0 (7.43)

which combined with λ(0) = 1
ξ q

′
0 from (7.39), implies

q′
0 = 0. (7.44)

Furthermore, it is not difficult to compute that

d

dt

∂L

∂q′
t

= (γ1 + γ2)σ2q′′
t − (γ1 + γ2)ϵσq′

t tanh
(
ϵt

σ

)
+ ϵ2sech

(
ϵt

σ

)2
(γ2(1 − qt) − γ1qt) (7.45)

Using Eq. (3.24) together with Eq. (7.41) and Eq. (7.45) we arrive at

λ′(t) = ∂L

∂qt
− d

dt

(
∂L

∂q′
t

)
= −(γ1 + γ2)σ2q′′

t + (γ1 + γ2) ϵ2qt − γ2ϵ
2 (7.46)

Comparing Eq. (7.40) with Eq. (7.46), we conclude that the following second order differential
equation has to hold

−
(

(γ1 + γ2)σ2 + 1
ξ

)
q′′

t + (γ1 + γ2) ϵ2qt − ϵ2

σ2ξ
sech

(
ϵT

σ

)
cosh

(
ϵt

σ

)
− γ2ϵ

2 = 0 (7.47)

which is equivalent to the following form

q′′
t − β2qt + ϱ cosh

(
ϵt

σ

)
+ τ = 0 (7.48)
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where β,ϱ, and τ are given by

β =
(

ϵ2ξ (γ1 + γ2)
(γ1 + γ2)σ2ξ + 1

)1/2

, ϱ =
ϵ2sech

(
ϵT
σ

)
((γ1 + γ2)σ2ξ + 1)σ2 , τ = γ2ϵ

2ξ

(γ1 + γ2)σ2ξ + 1
. (7.49)

The solution qt of (7.48) can be written as

qt = c1e
βt + c2e

−βt +
τ
(
β2σ2 − ϵ2

)
+ β2ϱσ2 cosh

(
ϵt
σ

)
β2 (β2σ2 − ϵ2)

= c1e
βt + c2e

−βt − sech
(
ϵT

σ

)
cosh

(
ϵt

σ

)
+ γ2
γ1 + γ2

. (7.50)

as by (7.49) we have
τ

β2 = γ2
γ1 + γ2

,
ϱσ2

β2σ2 − ϵ2
= −sech

(
ϵT

σ

)
.

Eq. (7.48) may be solved explicitly by using the conditions qT = 0 and q′
0 = 0, yielding

c1 = c2 = γ1
2(γ1 + γ2)

sech(βT ).

As a result, we deduce that

qt = γ1
γ1 + γ2

sech(βT ) cosh(βt) − sech
(
ϵT

σ

)
cosh

(
ϵt

σ

)
+ γ2
γ1 + γ2

. (7.51)

It follows from Eq. (7.51) that

q′
t = γ1β

γ1 + γ2
sech(βT ) sinh(βt) − ϵ

σ
sech

(
ϵT

σ

)
sinh

(
ϵt

σ

)
. (7.52)

Also, we know that

pt = −1
ξ

∫ t

0
sinh

(
ϵs

σ

)
q′

s ds

=
βγ1σsech(βT )

(
−ϵ cosh

(
ϵt
σ

)
sinh(βt) + βσ cosh(βt) sinh

(
ϵt
σ

))
(γ1 + γ2)(ϵ2 − β2σ2)ξ

+
sech

(
ϵT
σ

) (
σ sinh

(
2ϵt
σ

)
− 2ϵt

)
4ξσ

.

7.3 Proofs for Risk Sharing Case

We provide a proof for Lemma 4.6

Proof. Notice that p′
t 7→ L̃(t, pt, p

′
t) is strictly convex. Moreover, we have

lim
p′

t→∞

L̃(t, pt, p
′
t)

p′
t

= ∞
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and

L̃(t, pt, p
′
t) ≥ m(p′

t)
△= −θϵ− ϵ

σ
sech

(
ϵt

σ

)
p′

t + ξ

2

(
csch

(
ϵt

σ

))2
(p′

t)2 + 1
2
ϵ2Γ

(
tanh

(
ϵt

σ

))2

where m(p′
t) is a convex function of p′

t. Therefore, there is a function pt minimizing Ĩ by Theorem
4.36 in Dacorogna (2007). Thus, we get at by(4.11).

We now provide a proof for Lemma 4.7.

Proof. Observe that

∂L̃

∂pt
= ϵ2

σ2 tanh
(
ϵt

σ

)
sech

(
ϵt

σ

)
,

∂L̃

∂p′
t

= ξ

(
csch

(
ϵt

σ

))2
p′

t − ϵ

σ
sech

(
ϵt

σ

)
. (7.53)

Since pT is free, we have
∂L̃

∂p′
t

∣∣∣
t=T

= 0. (7.54)

Integrating
d

dt

∂L̃

∂p′
t

= ∂L̃

∂pt

from t to T and taking into account (7.54) we obtain

p′
t = ϵ

ξσ

(
sinh

(
ϵt
σ

))2
cosh

(
ϵT
σ

) . (7.55)

Integrating Eq. (7.55) from 0 to t and recalling p0 = 0 we obtain Eq. (4.14).

7.4 Proofs for Comparative Statics

We prove that αHA
t is a decreasing function of ϵ. We may rewrite it as

αHA
t = γ2

γ1 + γ2

cosh (ϵζt)
cosh (ϵζT )

[
1 − ζσ

tanh (ϵζt)
tanh

(
ϵt
σ

) ]

where
ζ

△=
√

(γ1 + γ2)ξ√
(γ1 + γ2)σ2ξ + 1

<
1
σ
.

We first show that cosh(ϵζt)
cosh(ϵζT ) is a decreasing function of ϵ. Therefore, we compute

d

dϵ

cosh (ϵζt)
cosh (ϵζT )

= sech (ϵζT ) [ζt sinh (ϵζt) − ζt cosh (ϵζt) tanh (ϵζT )]

≤ sech (ϵζT ) [ζ(t− T ) sinh(ϵζt)]
≤ 0
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for t ≤ T. Note that since 0 < ζ < 1/σ we get

0 < r(ϵ) △= 1 − ζσ
tanh (ϵζt)
tanh

(
ϵt
σ

) ≤ 1.

We next show that r(ϵ) is a decreasing function of ϵ. This follows from the fact that if t1 < t2 we
have

d

dϵ

tanh (ϵt1)
tanh (ϵt2)

= t1 coth (ϵt2) sech2(ϵt1) − t2csch2 (ϵt2) tanh(ϵt1) > 0

which may be seen by simply showing that

sinh (2ϵt2)
2t2

>
sinh (2ϵt1)

2t1
.

Consequently, αHA
t being the product of two positive decreasing functions decreases in ϵ.
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