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1. INTRODUCTION.We obtain a formula for the minimal initial wealth needed to hedge an arbitrary 
ontingent
laim in a 
ontinuous-time model with proportional transa
tion 
osts. The expressionobtained 
an be interpreted as the supremum of expe
ted values of the dis
ounted value ofthe 
laim, under all feasible \equivalent supermartingale measures", namely the probabilitymeasures under whi
h an appropriate \dis
ounted wealth pro
ess" is a supermartingale.These results are similar in spirit to some of those obtained by Jouini & Kallal (1991) and,in a dis
rete-time model, by Kusuoka (1995) and Shirakawa & Konno (1995). Unlike mostof the work on hedging under transa
tion 
osts (starting with Leland (1985)), we requirealmost sure rather than just approximate hedge. In other words, the investor has to beable to pay o� the 
laim at the exer
ise time, no matter what the path of the sto
k-pri
ehas been. This gives an upper bound for the 
laim pri
e whi
h is typi
ally quite high.For example, in the 
ase of the European 
all, this mimimal hedging pri
e is equal tothe pri
e of the sto
k at the time the option is pur
hased (this result was 
onje
turedin Davis & Clark (1994) and was proved by Soner, Shreve & Cvitani�
 (1995), as well asby Levental & Skorohod (1995)). Nevertheless, we �nd the result useful in studying theportfolio optimization problem on a �nite time-horizon, and also for a preferen
e-basedmethod for pri
ing 
laims under transa
tion 
osts.The methodology pro
eeds as follows. We 
hara
terize the solution to the portfo-lio optimization problem of maximizing utility from terminal wealth in the model, via atransformation to a hedging problem; the optimal portfolio is the one that hedges theinverse of marginal utility, evaluated at the shadow state-pri
e density whi
h solves the
orresponding dual problem. This hedging-duality approa
h has been used previously inmodels of in
omplete markets, markets with 
onstraints and markets with nonlinear driftsin the wealth pro
ess of the investor (Cvitani�
 and Karatzas (1992, 1993)), but seems tobe new in the 
ontext of models with transa
tion 
osts. A related approa
h based on the2



sto
hasti
 maximum prin
iple for singular 
ontrol problems, as developed in Cadenillas &Haussman (1994), is suggested in Cadenillas & Haussman (1993). The typi
al approa
hto utility maximization under transa
tion 
osts has been the analyti
al study of the valuefun
tion, and the des
ription of the optimal strategy as one with no transa
tions in a
ertain region, and with minimal transa
tions at the boundary in order always to keep theholdings ve
tor inside the region. Su
h was the spirit of the pioneering work of Magill andConstantinides (1976), and of the more mathemati
al papers by Taksar, Klass & Assaf(1988), Davis and Norman (1990), Shreve & Soner (1994). Those papers deal with the
onsumption optimization problem on an in�nite-horizon. The �nite-horizon problem isstudied in Davis, Panas & Zariphopoulou (1993). Our approa
h gives di�erent insights,
an be applied to the 
ase of time-dependent and random market 
oeÆ
ients, but providesno expli
it des
ription of optimal strategies, ex
ept for the 
ases in whi
h it is optimalnot to trade at all. The latter is the 
ase when the di�eren
e between the return rateof the sto
k and the interest rate is nonnegative but small, and/or the time-horizon issmall relative to the transa
tion 
osts. This is in 
ontrast with the in�nite-horizon 
ase, inwhi
h it is always optimal to hold some money in the sto
k if the return rate is positive, nomatter how small it is. It should be of 
onsiderable interest, to �nd additional examplesthat admit expli
it solutions.We also prove the existen
e of an optimal trading strategy dire
tly, using standardfun
tional-analyti
 arguments, without imposing extra assumptions su
h as the existen
eof an optimal solution to the dual problem.Finally, we indi
ate how to use the optimization result for a utility-based approa
hto the pri
ing of 
ontingent 
laims in su
h a market. Namely, following the approa
hof Davis (1994) as applied in Karatzas & Kou (1994), we use the pri
e obtained as theexpe
ted value of the 
laim under the probability measure 
orresponding to the optimalshadow state-pri
e density (in the dual problem), sin
e with this pri
e the investor be
omes3



neutral between diverting or not diverting a small amount of his funds into the option,resulting in zero marginal rate of substitution.Our model for proportional transa
tion 
osts is the same as that of Davis & Norman(1990). We des
ribe it pre
isely in Se
tion 2, and de�ne what we mean by hedging in thismarket. We derive a formula for the minimal hedging pri
e in Se
tion 4, using the auxiliarymartingales (shadow state-pri
e densities) introdu
ed in Se
tion 3. In Se
tions 5 and 6we des
ribe the utility maximization problem, 
hara
terize its solution, and present somesimple examples. Se
tion 7 proposes a method for pri
ing 
ontingent 
laims in a marketwith transa
tion 
osts, using the optimal state-pri
e density from the dual problem. Thelong and te
hni
al proof of a 
losedness result for hedging strategies is provided in anAppendix.Here are some related works on the subje
t of transa
tion 
osts, that the reader may�nd useful to 
onsult: Avellaneda & Par�as (1993), Bensaid, Lesne, Pag�es & S
heinkman(1992), Boyle & Tan (1994), Boyle & Vorst (1992), Dewynne, Whalley & Wilmott (1993),Davis & Panas (1994), Davis & Zariphopoulou (1995), Edirisinghe, Naik & Uppal (1993),Figlewski (1989), Flesaker & Hughston (1994), Hodges & Clewlow (1993), Gilster & Lee(1984), Henrotte (1993), Hodges & Neuberger (1989), Hoggard, Whalley &Wilmott (1993),Merton (1989), Morton & Pliska (1993), Panas (1993), Pliska & Selby (1993), Shen (1990),and Toft (1993).2. THE MODEL; DEFINITION OF HEDGING.We 
onsider a �nan
ial market 
onsisting of one riskless asset, 
alled bank a

ount (orbond) with pri
e B(�) given by(2:1) dB(t) = B(t)r(t)dt; B(0) = 1;and of one risky asset, 
alled sto
k, with pri
e-per-share S(�) governed by the sto
hasti
4



equation(2:2) dS(t) = S(t)[b(t)dt+ �(t)dW (t)℄ ; S(0) = p 2 (0;1);for t 2 [0; T ℄. Here T 2 (0;1) is the time-horizon, andW = fW (t); 0 � t � Tg a standard,one-dimensional Brownian motion on the 
omplete probability spa
e (
;F ;P); we shalldenote by F = fF(t)g the P-augmentation of the natural �ltration FW (t) = �(W (s); 0 �s � t); 0 � t � T generated by W . The 
oeÆ
ients of the model in (2.1), (2.2) { i.e., theinterest rate r(�), the sto
k-appre
iation-rate b(�) and the sto
k-volatility �(�) > 0 { areassumed to be bounded and F�progressively measurable pro
esses; furthermore, �(�) isalso assumed to be bounded away from zero (uniformly in (t; !)).Now, a trading strategy is a pair (L;M) of F�adapted pro
esses on [0; T ℄, with left-
ontinuous, nonde
reasing paths and L(0) = M(0) = 0; L(t) (respe
tively, M(t)) repre-sents the total amount of funds transferred from bank-a

ount to sto
k (respe
tively, fromsto
k to bank-a

ount) by time t. Given proportional transa
tion 
osts 0 < �; � < 1 forsu
h transfers, and initial holdings x; y in bank and sto
k, respe
tively, the portfolio hold-ings X(�) = Xx;L;M(�); Y (�) = Y y;L;M(�) 
orresponding to a given trading strategy (L;M),evolve a

ording to the equations:(2:3) X(t) = x� (1 + �)L(t) + (1� �)M(t) + Z t0 X(u)r(u)du; 0 � t � T
(2:4) Y (t) = y + L(t)�M(t) + Z t0 Y (u)[b(u)du+ �(u)dW (u)℄; 0 � t � T:2.1 De�nition: A 
ontingent 
laim is a pair (C0; C1) of F(T )�measurable random vari-ables. We say that a trading strategy (L;M) hedges the 
laim (C0; C1) starting with (x; y)as initial holdings, if X(�); Y (�) of (2.3), (2.4) satisfy(2:5) X(T ) + (1� �)Y (T ) � C0 + (1� �)C15



(2:6) X(T ) + (1 + �)Y (T ) � C0 + (1 + �)C1:(Here and in the sequel, 
omparisons of random variables, in the form of equalities orinequalities, are interpreted \almost surely".)Interpretation: Here C0 (respe
tively, C1) is understood as a target-position in thebank-a

ount (resp., the sto
k) at the terminal time t = T : for example(2:7) C0 = �q1fS(T )>qg; C1 = S(T )1fS(T )>qgin the 
ase of a European 
all-option; and(2:8) C0 = q1fS(T )<qg; C1 = �S(T )1fS(T )<qgfor a European put-option (both with exer
ise pri
e q � 0).\Hedging", in the sense of (2.5) and (2.6), simply means that \one is able to 
overthese positions at t = T". Indeed, assume that we have both Y (T ) � C1 and (2.5), in theform(2:5)0 X(T ) + (1� �)[Y (T )� C1℄ � C0 ;then (2.6) holds too, and (2.5)0 shows that we 
an 
over the position in the bank-a

ountas well, by transferring the amount Y (T ) � C1 � 0 to it. Similarly, suppose we haveY (T ) < C1 and (2.6), in the form(2:6)0 Y (T ) + 11 + � [X(T )� C0℄ � C1 ;then (2.5) holds as well, and (2.6)0 shows that we 
an again 
over both positions by keepingC0 in the bank-a

ount and transferring the di�eren
e X(T )� C0 to the sto
k.2.3 Remark: The equations (2.3), (2.4) 
an be written in the equivalent form(2:9) d�X(t)B(t)� = � 1B(t)� [(1� �)dM(t)� (1 + �)dL(t)℄ ; X(0) = x6



(2:10) d�Y (t)S(t)� = � 1S(t)� [dL(t)� dM(t)℄ ; Y (0) = yin terms of \number-of-shares" (rather than amounts) held.3. AUXILIARY MARTINGALES.Consider the 
lass D of pairs of stri
tly positive F�martingales (Z0(�); Z1(�)) with(3:1) Z0(0) = 1 ; z := Z1(0) 2 [p(1� �); p(1 + �)℄and(3:2) 1� � � R(t) := Z1(t)Z0(t)P (t) � 1 + �; 8 0 � t � T;where(3:3) P (t) := S(t)B(t) = p+ Z t0 P (u)[(b(u)� r(u))du+ �(u)dW (u)℄ ; 0 � t � Tis the dis
ounted sto
k pri
e.The martingales Z0(�); Z1(�) are the feasible state-pri
e densities for holdings in bankand sto
k, respe
tively, in this market with transa
tion 
osts; as su
h, they re
e
t the\
onstraints" or \fri
tions" inherent in this market, in the form of 
ondition (3.2). Fromthe martingale representation theorem (e.g. Karatzas & Shreve (1991), x3.4) there existF�progressively measurable pro
esses �0(�); �1(�) with R T0 (�20(t) + �21(t))dt <1 a.s. and(3:4) Zi(t) = Zi(0) exp�Z t0 �i(s)dW (s)� 12 Z t0 �2i (s)ds� ; i = 0; 1;thus, the pro
ess R(�) of (3.2) has the dynami
s(3:5) dR(t) =R(t)[�2(t) + r(t)� b(t)� (�1(t)� �0(t))(�(t) + �0(t))℄dt+R(t)(�1(t)� �(t)� �0(t))dW (t); R(0) = z=p:7



3.1 Remark: A rather \spe
ial" pair (Z�0 (�); Z�1 (�)) 2 D is obtained, if we take in (3.4)the pro
esses (�0(�); �1(�)) to be given as(3:6) ��0(t) := r(t)� b(t)�(t) ; ��1(t) := �(t) + ��0(t) ; 0 � t � T;and let Z�0 (0) = 1; p(1 � �) � Z�1 (0) = z � p(1 + �): Be
ause then, from (3.5), R�(�) :=Z�1 (�)Z�0 (�)P (�) � zp ; in fa
t, the pair of (3.6) and z = p provide the only member (Z�0 (�); Z�1(�))of D, if � = � = 0: Noti
e that the pro
esses ��0(�), ��1(�) of (3.6) are bounded.3.2 Remark: Let us observe also that the martingales Z0(�); Z1(�) play the role of adjointpro
esses to the \number-of-share holdings" pro
esses X(�)=B(�); Y (�)=S(�), respe
tively,in the sense that(3:7)Z0(t)X(t)B(t) + Z1(t)Y (t)S(t) + Z t0 Z0(s)B(s) [(1 + �)�R(s)℄dL(s) + Z t0 Z0(s)B(s) [R(s)� (1� �)℄dM(s)= x+ yzp + Z t0 Z0(s)B(s) [X(s)�0(s) + R(s)Y (s)�1(s)℄dW (s) ; 0 � t � Tis a P�lo
al martingale, for any (Z0(�); Z1(�)) 2 D and any trading strategy (L;M); thisfollows dire
tly from (2.9), (2.10), (3.4) and the produ
t rule. Equivalently, (3.7) 
an bere-written as(3:8) X(t) + R(t)Y (t)B(t) + Z t0 (1 + �)� R(s)B(s) dL(s) + Z t0 R(s)� (1� �)B(s) dM(s)= x+ yzp + Z t0 R(s)Y (s)B(s) (�1(s)� �0(s))dW0(s) = P0 � lo
al martingale;where(3:9) W0(t) :=W (t)� Z t0 �0(s)ds; 0 � t � Tis (by Girsanov's theorem, e.g. Karatzas & Shreve (1991), x3.5) a Brownian motion underthe equivalent probability measure(3:10) P0(A) := E[Z0(T )1A℄; A 2 F(T ):8



3.3 Remark: We shall denote by Z�0 (�);W �0 (�) and P�0 the pro
esses and probability mea-sure, respe
tively, 
orresponding to the pro
ess ��0(�) of (3.6), via the equations (3.4) (withZ�0 (0) = 1), (3.9) and (3.10). With this notation, (3.3) be
omes dP (t) = P (t)�(t)dW �0 (t),P (0) = p.3.4 De�nition: Let D1 be the 
lass of positive martingales (Z0(�); Z1(�)) 2 D, for whi
hthe random variable(3:11) Z0(T )Z�0 (T ) ; and thus also Z1(T )Z�0 (T )P (T ) ;is essentially bounded.3.5 De�nition: We shall say that a given trading strategy (L;M) is admissible for (x; y),and write (L;M) 2 A(x; y), if(3:12) X(�) + R(�)Y (�)B(�) is a P0 � supermartingale, 8 (Z0(�); Z1(�)) 2 D1:Consider, for example, a trading strategy (L;M) that satis�es the no-bankrupt
y
onditions X(t) + (1 + �)Y (t) � 0 and X(t) + (1� �)Y (t) � 0; 8 0 � t � T:Then X(�) + R(�)Y (�) � 0 for every (Z0(�); Z1(�)) 2 D (re
all (3.2), and note Remark3.6 below); this means that the P0�lo
al martingale of (3.8) is nonnegative, hen
e aP0�supermartingale. But the se
ond and the third termsZ �0 1 + �� R(s)B(s) dL(s); Z �0 R(s)� (1� �)B(s) dM(s)in (3.8) are in
reasing pro
esses, thus the �rst term X(�)+R(�)Y (�)B(�) is also aP0�supermartingale,for every pair (Z0(�); Z1(�)) in D. The 
ondition (3.12) is a
tually weaker, in that it re-quires this property only for pairs in D1. This provides a motivation for De�nition 3.4,namely, to allow for as wide a 
lass of trading strategies as possible, and still ex
lude9



arbitrage opportunities. This is usually done by imposing a lower bound on the wealthpro
ess; however, that ex
ludes simple strategies of the form \trade only on
e, by buying a�xed number of shares of the sto
k at a spe
i�ed time t", whi
h may require (unbounded)borrowing. We shall have o

asion, to use su
h strategies in the sequel; see, for example,(4.20).3.6 Remark: Here is a trivial (but useful) observation: if x+(1��)y � a+(1��)b andx+ (1 + �)y � a+ (1 + �)b, then x+ ry � a+ rb; 8 1� � � r � 1 + �:4. HEDGING PRICE.Suppose that we are given an initial holding y 2 R in the sto
k, and want to hedge a given
ontingent 
laim (C0; C1) with strategies whi
h are admissible (in the sense of De�nitions2.1, 3.4). What is the smallest amount of holdings in the bank(4:1) h(C0; C1; y) := inffx 2 R= 9(L;M) 2 A(x; y) and (L;M) hedges (C0; C1)gthat allows to do this? We 
all h(C0; C1; y) the hedging pri
e of the 
ontingent 
laim(C0; C1) for initial holding y in the sto
k, and with the 
onvention that h(C0; C1; y) =1if the set in (4.1) is empty.Suppose this is not the 
ase, and let x 2 R belong to the set of (4.1); then for any(Z0(�); Z1(�)) 2 D1 we have from (3.12), the De�nition 2.1 of hedging, and Remark 3.6:x+ ypEZ1(T ) = x+ ypz � E0 �X(T ) + R(T )Y (T )B(T ) �� E0 �C0 +R(T )C1B(T ) � = E �Z0(T )B(T ) (C0 + R(T )C1)� ;so that x � E hZ0(T )B(T ) (C0 +R(T )C1)� ypZ1(T )i. Therefore(4:2) h(C0; C1; y) � supD1 E �Z0(T )B(T ) (C0 +R(T )C1)� ypZ1(T )� ;10



and this inequality is 
learly also valid if h(C0; C1; y) =1.4.1 Lemma: If the 
ontingent 
laim (C0; C1) is bounded from below, in the sense(4:3) C0 + (1 + �)C1 � �K and C0 + (1� �)C1 � �K; for some 0 � K <1then(4:4)supD1 E �Z0(T )B(T ) (C0 + R(T )C1)� ypZ1(T )� = supD E �Z0(T )B(T ) (C0 + R(T )C1)� ypZ1(T )� :Proof: Start with arbitrary (Z0(�); Z1(�)) 2 D and de�ne the sequen
e of stopping timesf�ng " T by �n := infft 2 [0; T ℄ = Z0(t)Z�0 (t) � ng ^ T; n 2 N:Consider also, for i = 0; 1 and in the notation of (3.6): �(n)i (t) := � �i(t); 0 � t < �n��i (t); �n � t � T �and Z(n)i (t) = zi expfZ t0 �(n)i (s)dW (s)� 12 Z t0 (�(n)i (s))2dsgwith z0 = 1; z1 = Z1(0) = EZ1(T ): Then, for every n 2 N , both Z(n)0 (�) and Z(n)1 (�) arepositive martingales, R(n)(�) = Z(n)1 (�)Z(n)0 (�)P (�) = R(� ^ �n) takes values in [1 � �; 1 + �℄ (by(3.2) and Remark 3.1), and Z(n)0 (�)=Z�0 (�) is bounded by n (in fa
t, 
onstant on [�n; T ℄):Therefore, (Z(n)0 (�); Z(n)1 (�)) 2 D1: Now let � denote an upper bound on K=B(T ), andobserve, from Remark 3.6, (4.3) and Fatou's lemma:
(4:5)

E �Z0(T )B(T ) (C0 + R(T )C1)� ypZ1(T )�+ ypZ1(0) + �= E �Z0(T )�C0 + R(T )C1B(T ) + ���= E �limn Z(n)0 (T )�C0 + R(n)(T )C1B(T ) + ���� lim infn E �Z(n)0 (T )�C0 + R(n)(T )C1B(T ) + ���= lim infn E "Z(n)0 (T )B(T ) (C0 +R(n)(T )C1)� ypZ(n)1 (T )#+ ypZ1(0) + �:11



This shows that the left-hand-side dominates the right-hand-side in (4.4); the reverseinequality is obvious.Remark: Formally taking y = 0 in (4.5), we dedu
e(4:6) E0�C0 + R(T )C1B(T ) � � lim infn!1 E(n)0 �C0 + R(n)(T )C1B(T ) � ;where E0; E(n)0 denote expe
tations with respe
t to the probability measures P0 of (3.10)and P(n)0 (�) = E[Z(n)0 (T )1�℄, respe
tively.Here is the main result of this se
tion.4.2 Theorem: Under the 
onditions (4.3) and(4:7) E�0(C20 + C21 ) <1 ;we have(4:8) h(C0; C1; y) = supD E �Z0(T )B(T ) (C0 +R(T )C1)� ypZ1(T )� :
In (4.7), E�0 denotes expe
tation with respe
t to the probability measure P�0 of Remark3.2. The 
onditions (4:3); (4:7) are both easily veri�ed for a European 
all or put (as in(2.7) or (2.8), respe
tively). In fa
t, using the �rst part of the argument in Appendix A,one 
an show that if a pair of admissible terminal holdings (X(T ); Y (T )) hedges, in thesense of (2.5) and (2.6), a pair ( ~C0; ~C1) satisfying (4.7) (for example, ( ~C0; ~C1) � (0; 0)),then ne
essarily the pair (X(T ); Y (T )) also satis�es (4.7) { and so does any other pair ofrandom variables (C0; C1) whi
h are bounded from below and are hedged by (X(T ); Y (T )).In other words, any strategy whi
h satis�es the \no-bankrupt
y" 
ondition of hedging(0; 0), ne
essarily results in a square-integrable �nal wealth. In this sense, the 
ondition(4.7) is 
onsistent with the standard \no-bankrupt
y" 
ondition, hen
e not very restri
tive.It would be of signi�
ant interest to be able to des
ribe the least expensive hedgingstrategy asso
iated with a general hedgeable 
ontingent 
laim; this would probably require12



a purely probabilisti
 approa
h, using dynami
 programming and 
ontrol-theoreti
 ideas
oupled with martingale methods, in the spirit of our earlier work Cvitani�
 & Karatzas(1993). Su
h a proof we have not been able to obtain. Our fun
tional-analyti
 proof, whi
htakes up the remainder of this se
tion and was inspired by similar arguments in Kusuoka(1995), does not provide the 
onstru
tion of su
h a strategy.Proof: In view of Lemma 4.1 and the inequality (4.2), it suÆ
es to show(4:9) h(C0; C1; y) � supD E �Z0(T ) C0B(T ) + Z1(T )� C1S(T ) � yp�� =: R:And in order to alleviate somewhat the (already rather heavy) notation, we shall takep = 1; r(�) � 0, thus B(�) � 1, for the remainder of the se
tion and in Appendix A; thereader will verify easily that this entails no loss of generality.We start by taking an arbitrary b < h(C0; C1; y) and 
onsidering the sets(4:10)A0 := f(U; V ) 2 (L�2)2 : 9(L;M) 2 A(0; 0) that hedges (U; V ) starting with x = 0; y = 0g(4:11) A1 := f(C0 � b; C1 � yS(T ))g;where L�2 = L2(
;F(T );P�0). It is not hard to prove (see below) that(4:12) A0 is a 
onvex 
one, and 
ontains the origin (0; 0); in (L�2)2;(4:13) A0 \A1 = ;:It is, however, 
onsiderably harder to establish that(4:14) A0 is 
losed in (L�2)2:(This proof is 
arried out in Appendix A.) From (4.12)-(4.14) and the Hahn-Bana
h the-orem there exists a pair of random variables (��0; ��1) 2 (L�2)2; not equal to (0; 0), su
hthat(4:15) E�0 [��0V0 + ��1V1℄ = E[�0V0 + �1V1℄ � 0; 8 (V0; V1) 2 A013



(4:16) E�0 [��0(C0 � b) + ��1(C1 � yS(T ))℄ = E[�0(C0 � b) + �1(C1 � yS(T ))℄ � 0;where �i := ��iZ�0 (T ); i = 0; 1. It is also not hard to 
he
k (see below) that(4:17) (1� �)E[�0jF(t)℄ � E[�1S(T )jF(t)℄S(t) � (1 + �)E[�0jF(t)℄; 8 0 � t � T(4:18) �1 � 0; �0 � 0 and E�0 > 0; E(�1S(T )) > 0:In view of (4.18), we may take E�0 = 1, and then (4.16) gives(4:19) b � E[�0C0 + �1(C1 � yS(T ))℄:Consider now arbitrary 0 < " < 1; (Z0(�); Z1(�)) 2 D, and de�ne~Z0(t) := "Z0(t) + (1� ")E[�0jF(t)℄; ~Z1(t) := "Z1(t) + (1� ")E[�1S(T )jF(t)℄; 0 � t � T:Clearly these are positive martingales, and ~Z0(0) = 1; on the other hand, multiplying in(4.17) by 1 � ", and in (1 � �)Z0(t) � Z1(t)=S(t) � (1 + �)Z0(t); 0 � t � T (just (3.2)with r(�) � 0) by ", and adding up, we obtain ( ~Z0(�); ~Z1(�)) 2 D: Thus, in the notation of(4.9), R � E � ~Z0(T )C0 + ~Z1(T )� C1S(T ) � y��= (1� ")E[�0C0 + �1(C1 � yS(T ))℄ + "E �Z0(T )C0 + Z1(T )� C1S(T ) � y��� b(1� ") + "E �Z0(T )C0 + Z1(T )� C1S(T ) � y��from (4.19); letting " # 0 and then b " h(C0; C1; y), we obtain (4.9), as required to 
ompletethe proof of Theorem 4.2.Proof of (4.12): Suppose that (Ui; Vi) 2 (L�2)2 are hedged by (Li;Mi) 2 A(0; 0), respe
-tively, for i = 1; 2; in other words, if we let (Xi; Yi) be the 
orresponding holdings as in(2.3), (2.4) (with x = y = 0; r(�) � 0), we have:Xi(T ) + (1� �)Yi(T ) � Ui + (1� �)Vi;14



Xi(T ) + (1 + �)Yi(T ) � Ui + (1 + �)Vi;and Xi(�) + R(�)Yi(�) is a P0�supermartingale, 8 (Z0(�); Z1(�)) 2 D1 for i = 1; 2. Now,with � � 0; � � 0 and (U; V ) = (�U1+ �U2; �V1+ �V2) 2 (L�2)2, it is straightforward to see(using the linearity of the equations (2.3) and (2.4)) that (U; V ) is hedged by (L;M) =(�L1+�L2; �M1+�M2) 2 A(0; 0). If we take 0 < � < 1; � = 1�� we verify the 
onvexityof A0; if we take � > 0; � = 0 we verify that A0 is a 
one; and we 
an hedge (0; 0) 2 (L�2)2simply by L �M � 0:Proof of (4.13): Suppose that A0\A1 is not empty, i.e., that there exists (L;M) 2 A(0; 0)su
h that, with X(�) = X0;L;M(�) and Y (�) = Y 0;L;M(�), the pro
ess X(�) + R(�)Y (�) is aP0�supermartingale for every (Z0(�); Z1(�)) 2 D1, and we have:X(T ) + (1� �)Y (T ) � (C0 � b) + (1� �)(C1 � yS(T ));X(T ) + (1 + �)Y (T ) � (C0 � b) + (1 + �)(C1 � yS(T )):But then, with~X(�) := Xb;L;M(�) = b+X(�); ~Y (�) := Y y;L;M(�) = Y (�) + yS(�)we have, from above, that ~X(�) + R(�) ~Y (�) = X(�) + R(�)Y (�) + b + yZ1(�)=Z0(�) is aP0�supermartingale for every (Z0(�); Z1(�)) 2 D1, and that~X(T ) + (1� �) ~Y (T ) � C0 + (1� �)C1;~X(T ) + (1 + �) ~Y (T ) � C0 + (1 + �)C1:In other words, (L;M) belongs to A(b; y) and hedges (C0; C1) starting with (b; y) { a
ontradi
tion to the de�nition (4.1), and to the fa
t h(C0; C1; y) > b.Proof of (4.17), (4.18): Fix t 2 [0; T ) and let � be an arbitrary bounded, nonnegative,F(t)�measurable random variable. Consider the strategy of starting with (x; y) = (0; 0)15



and buying � shares of sto
k at time s = t, otherwise doing nothing (\buy-and-holdstrategy"); more expli
itly, M �(�) � 0, L�(s) = �S(t)1(t;T ℄(s) and thus(4:20)X�(s) := X0;L�;M�(�) = ��(1 + �)S(t)1(t;T ℄(s); Y �(s) := Y 0;L�;M� (s) = �S(s)1(t;T ℄(s);for 0 � s � T . Consequently, Z0(s)[X�(s)+R(s)Y �(s)℄ = �[Z1(s)�(1+�)S(t)Z0(s)℄1(t;T ℄(s)is a P�supermartingale for every (Z0(�); Z1(�)) 2 D, sin
e, for instan
e with t < s � T :E[Z0(s)(X�(s) + R(s)Y �(s))jF(t)℄ = � (E[Z1(s)jF(t)℄� (1 + �)S(t)E[Z0(s)jF(t)℄)= �[Z1(t)� (1 + �)S(t)Z0(t)℄ = �S(t)Z0(t)[R(t)� (1 + �)℄ � 0 = Z0(t)[X�(t) + R(t)Y �(t)℄:Therefore, (L�;M �) 2 A(0; 0), thus (X�(T ); Y �(T )) belongs to the set A0 of (4.10), and,from (4.15): 0 � E[�0X�(T ) + �1Y �(T )℄ = E[�(�1S(T )� (1 + �)�0S(t))℄= E���E[�1S(T )jF(t)℄� (1 + �)S(t)E[�0jF(t)℄��:From the arbitrariness of � � 0, we dedu
e the inequality of the right-hand side in (4.17),and a dual argument gives the inequality of the left-hand side, for given t 2 [0; T ). Nowall three pro
esses in (4.17) have 
ontinuous paths (re
all that martingales of the Brow-nian �ltration are representable as sto
hasti
 integrals, and thus have almost all paths
ontinuous); 
onsequently, (4.17) is valid for all t 2 [0; T ℄.Next, we noti
e that (4.17) with t = T implies (1 � �)�0 � �1 � (1 + �)�0, so that�0, hen
e also �1, is nonnegative. Similarly, (4.17) with t = 0 implies (1 � �)E�0 �E[�1S(T )℄ � (1+�)E�0, and therefore, sin
e (�0; �1) is not equal to (0; 0), E�0 > 0, hen
ealso E[�1S(T )℄ > 0: This proves (4.18).4.3 Example: Consider the European 
all option of (2.7), whereby one has to deliver ashare of the sto
k if the pri
e S(T ) at time t = T ex
eeds q, and one 
an still 
over theremaining position in the bank by the amount q > 0 of the exer
ise pri
e. From (4.8) with16



y = 0, we have(4:21) h(C0; C1) � h(C0; C1; 0) = supD E �Z1(T )1fS(T )>qg � qZ0(T )B(T ) 1fS(T )>qg� ;and therefore, h(C0; C1) � supD EZ1(T ) = supD Z1(0) � (1 + �)p: The number p(1 + �)
orresponds to the 
ost of the \buy-and-hold strategy", of a
quiring one share of the sto
kat t = 0 (at a pri
e p(1+�), due to the transa
tion 
ost), and holding on to it until t = T:Davis & Clark (1993) 
onje
tured that this hedging strategy is a
tually the 
heapest:(4:22) h(C0; C1) = (1 + �)p:The 
onje
ture (4.22) was proved by Soner, Shreve & Cvitani�
 (1995), as well as by Levental& Skorohod (1995). It is an open question to derive (4.22) dire
tly from the representation(4.21); in other words, to �nd a sequen
e f(Z(n)0 (�); Z(n)1 (�))gn2N withP0(n)[S(T ) > q℄! 0; E[Z(n)1 (T )1fS(T )>qg℄! 1; Z(n)1 (0)! 1 + �;as n " 1. We have not yet been able to a

omplish this.5. UTILITY FUNCTIONS.In the next se
tion we shall use the basi
 result, Theorem 4.2, to dis
uss some expe
ted-utility-maximization problems in the 
ontext of the model of se
tion 2. For this, we shallneed the 
on
ept of utility fun
tion.A fun
tion U : (0;1) ! R will be 
alled utility fun
tion if it is stri
tly in
reasing,stri
tly 
on
ave, 
ontnuously di�erentiable, and satis�es(5:1) U 0(0+) := limx#0 U 0(x) =1 ; U 0(1) := limx!1U 0(x) = 0 :We shall understand U(x) = �1 for x < 0.17



The 
ontinuous, stri
tly de
reasing fun
tion U 0(�) has an inverse I(�) with these sameproperties, whi
h maps (0;1) onto itself, and satis�es I(0+) = 1; I(1) = 0. We shallalso �nd useful the 
onvex dual(5:2) ~U(�) := maxx>0 [U(x)� x�℄ = U(I(�))� �I(�); 0 < � <1of U(�), whi
h satis�es(5:3) ~U 0(�) = �I(�); 0 < � <1Remark: For some purposes, we shall need to impose the extra 
ondition(5:4) xU 0(x) � a+ (1� b)U(x); 8 0 < x <1(for suitable a � 0; 0 < b � 1) on our utility fun
tions. This 
ondition is 
learly satis�edby U(x) = logx and by U(x) = 1ÆxÆ, for 0 < Æ < 1; it is also satis�ed if U(1) = 1 andU(�) is bounded from below (
f. Cuo
o (1994)).6. MAXIMIZING EXPECTED UTILITY FROM TERMINAL WEALTH.Consider now a small investor, who 
an make de
isions in the 
ontext of the market modelof (2.1), (2.2) as des
ribed in se
tion 2, and who derives utility U(X(T+)) from his terminalwealth(6:1) X(T+) := X(T ) + f(Y (T )); where f(u) := � (1 + �)u ; u � 0(1� �)u ; u > 0� :In other words, this agent liquidates at the end of the day his position in the sto
k, in
ursthe appropriate transa
tion 
ost, and 
olle
ts all the money in the bank-a

ount. For agiven initial holding y � 0 in the sto
k, his optimization problem is to �nd an admissiblepair (L̂; M̂) 2 A+(x; y) that maximizes expe
ted utility from terminal wealth, i.e., attainsthe supremum(6:2) V (x; y) := sup(L;M)2A+(x;y)EU�Xx;L;M(T ) + f(Y y;L;M(T ))�; 0 < x <1;18



whereA+(x; y) is the 
lass of pro
esses (L;M) 2 A(x; y) for whi
hXx;L;M(T )+f(Y y;L;M(T ))� 0. We show in Appendix B that the supremum of (6.2) is attained, i.e., that there existsan optimal pair (L̂; M̂) for this problem, and that V (x; y) < 1. Our purpose in thisse
tion is to des
ribe the nature of this optimal pair, by using results of se
tion 4 in the
ontext of the dual problem(6:3) ~V (�; y) := inf(Z0;Z1)2DE � ~U �� Z0(T )B(T ) �+ yp�Z1(T )� ; 0 < � <1;under the following assumption.6.1 Assumption: There exists a pair (Ẑ0(�); Ẑ1(�)) 2 D; that attains the in�mum in (6.3),and does so for all 0 < � <1. Moreover, for all 0 < � <1, we have~V (�; y) <1 and E " Ẑ0(T )B(T ) I ��Z�0 (T )B(T ) �# <1:6.2 Remark: The assumption that the in�mum of (6.3) is attained is a big one; wehave not yet been able to obtain a general existen
e result to this e�e
t, only very simpleexamples that 
an be solved expli
itly (
f. Examples 6.5-6.7). The assumption that theminimization in (6.3) 
an be 
arried out for all 0 < � < 1 simultaneously, is made onlyfor simpli
ity; it 
an be dispensed with using methods analogous to those in Cvitani�
 &Karatzas (1992). Note, however, that this latter assumption is satis�ed if y = 0 and eitherU(x) = log x or U(x) = 1ÆxÆ for 0 < Æ < 1. It should also be mentioned that the optimalpair (Ẑ0(�); Ẑ1(�)) of Assumption 6.1 need not be unique (we thank the anonimous refereefor pointing this out); thus, in the remainder of this se
tion, (Ẑ0(�); Ẑ1(�)) will denote anypair that attains the in�mum in (6.3), as in Assumption 6.1For any su
h pair, we have then the following property, proved at the end of thisse
tion.6.3 Lemma: Under the Assumption 6.1 and the 
ondition (5.4), we have(6:4)E "Z0(T )B(T ) I  � Ẑ0(T )B(T ) !� ypZ1(T )# � E " Ẑ0(T )B(T ) I  � Ẑ0(T )B(T ) !� yp Ẑ1(T )# <1; 80 < � <119



for every (Z0(�); Z1(�)) in D.Now, be
ause the fun
tion � 7! E h Ẑ0(T )B(T ) I(� Ẑ0(T )B(T ) )i : (0;1) ! (0;1) is 
ontinuousand stri
tly de
reasing, there exists a unique �̂ = �̂(x; y; U) 2 (0;1) that satis�es(6:5) E " Ẑ0(T )B(T ) I  �̂ Ẑ0(T )B(T ) !# = x+ ypEẐ1(T ):And with(6:6) Ĉ0 := I  �̂ Ẑ0(T )B(T ) ! ; Ĉ1 := 0;it follows from (6.4) that(6:7)sup(Z0;Z1)2DE "Z0(T ) Ĉ0B(T ) + Z1(T ) Ĉ1S(T ) � yp!# = E "Ẑ0(T ) Ĉ0B(T ) + Ẑ1(T ) Ĉ1S(T ) � yp!#= x:Consequently, if in addition we have Ĉ0 2 L�2, then Theorem 4.2 gives h(Ĉ0; Ĉ1; y) = x.Now it 
an be shown, by an argument analogous to that in the Appendix A (see alsothe appendix in Soner, Shreve & Cvitani�
 (1995)), that the in�mum in (4.1) is a
tuallyattained; in other words, there exists a pair (L̂; M̂) 2 A(x; y) su
h that, with X̂(�) �Xx;L̂;M̂ (�), Ŷ (�) � Y y;L̂;M̂ (�), we have(6:8) X̂(T ) + (1� �)Ŷ (T ) � Ĉ0; X̂(T ) + (1 + �)Ŷ (T ) � Ĉ0:6.4 Theorem: Under Assumption 6.1, and the 
onditions (5.4),(6:9) E�0 [Ĉ20 ℄ = E�0 hI2(�̂Ẑ0(T )=B(T ))i <1;the above pair (L̂; M̂) 2 A(x; y) is optimal for the problem of (6.2), and satis�es(6:10) X̂(T+) := X̂(T ) + f(Ŷ (T )) = I(�̂Ẑ0(T )=B(T )) = Ĉ0(6:11) L̂(�) is 
at o� the set f0 � t � T=R̂(t) = 1 + �g20



(6:12) M̂(�) is 
at o� the set f0 � t � T=R̂(t) = 1� �g(6:13) X̂(t) + R̂(t)Ŷ (t)B(t) = Ê0 "I(�̂Ẑ0(T )=B(T ))B(T ) ����F(t)# ; 0 � t � T;where R̂(�) := Ẑ1(�)Ẑ0(�)P (�) . Furthermore, we have ~V (�̂; y) = V (x; y)� x�̂ <1.Proof: As we just argued, (6.9) and Theorem 4.2 imply the existen
e of a pair (L̂; M̂) 2A(x; y), so that (6.8) is satis�ed; and from (6.8), we know that both(6:14) X̂(T ) + R̂(T )Ŷ (T ) � Ĉ0; X̂(T ) + f(Ŷ (T )) � Ĉ0hold. On the other hand, (3.12) implies that the pro
ess(6:15) X̂(�) + R̂(�)Ŷ (�)B(�) is a P̂0 � supermartingale:Therefore, from (6.5), (6.14) and (6.15) we have
(6:16) x+ ypEẐ1(T ) = E " Ẑ0(T )B(T ) I  �̂ Ẑ0(T )B(T ) !# = Ê0 Ĉ0B(T )!� Ê0 X̂(T ) + R̂(T )Ŷ (T )B(T ) ! � x+ ypEẐ1(T );when
e(6:17) X̂(T ) + R̂(T )Ŷ (T ) = Ĉ0:But now from (6.8), (6.14) we dedu
e R̂(T ) = 1� � on fŶ (T ) > 0g, and R̂(T ) = 1+ � onfŶ (T ) < 0g; thusĈ0 = X̂(T ) + R̂(T )Ŷ (T )= X̂(T ) + Ŷ (T )[(1 + �)1fŶ (T )�0g + (1� �)1fŶ (T )>0g℄ = X̂(T ) + f(Ŷ (T ));and (6.10) follows. 21



It develops from (6.15), (6.16) that the pro
ess X̂(�)+R̂(�)Ŷ (�)B(�) is a P̂0�supermartingalewith 
onstant expe
tation, thus a P̂0�martingale; from this and (6.17), we obtain (6.13),as well as the fa
t that this pro
ess is nonnegative, hen
e that the P̂0�lo
al martingale(6:18) X̂(t) + R̂(t)Ŷ (t)B(t) + Z t0 1 + �� R̂(s)B(s) dL̂(s) + Z t0 R̂(s)� (1� �)B(s) dM̂(s); 0 � t � Tis also nonnegative. Consequently, the pro
ess of (6.18) is a P̂0�supermartingale, withP̂0�expe
tation at most x+ ypEẐ1(T ) at t = T ; but this is equal to the P̂0�expe
tationof X̂(T )+R̂(T )Ŷ (T )B(T ) by (6.16), when
e the nonnegative termsZ T0 1 + �� R̂(s)B(s) dL̂(s) ; Z T0 R̂(s)� (1� �)B(s) dM̂(s)must have P̂0�expe
tation equal to zero. The 
laims (6.11), (6.12) follow.Now for the optimality of the pair (L̂; M̂): we have from (6.10), (5.2) and (6.5)
(6:19) EU(X̂(T ) + f(Ŷ (T )))) = EU(Ĉ0) = EU  I��̂ Ẑ0(T )B(T ) �!= E ~U  �̂ Ẑ0(T )B(T ) !+ �̂E " Ẑ0(T )B(T ) I  �̂ Ẑ0(T )B(T ) !#= E ~U  �̂ Ẑ0(T )B(T ) !+ �̂x+ �̂ ypEẐ1(T ) = ~V (�̂; y) + x�̂:Consider also the holdings pro
esses X(�) � Xx;L;M(�), Y (�) � Y y;L;M (�) 
orresponding toan arbitrary strategy (L;M) 2 A(x; y). Again from (5.2), we haveU(X(T ) + (1� �)Y (T )) � ~U  �̂ Ẑ0(T )B(T ) !+ �̂ Ẑ0(T )B(T ) [X(T ) + (1� �)Y (T )℄

U(X(T ) + (1 + �)Y (T )) � ~U  �̂ Ẑ0(T )B(T ) !+ �̂ Ẑ0(T )B(T ) [X(T ) + (1 + �)Y (T )℄22



and thus, in 
onjun
tion with Remark 3.6, (4.6) and (3.12),(6:20)EU(X(T ) + f(Y (T ))) � E ~U  �̂ Ẑ0(T )B(T ) !+ �̂Ê0 X(T ) + R̂(T )Y (T )B(T ) !
� E ~U  �̂ Ẑ0(T )B(T ) !+ �̂ lim infn!1 Ê(n)0  X(T ) + R̂(n)(T )Y (T )B(T ) !
� E ~U  �̂ Ẑ0(T )B(T ) !+ �̂(x+ ypEẐ1(T ))= ~V (�̂; y) + x�̂:The optimality of (L̂; M̂) 2 A(x; y) for the problem of (6.2), as well as the equalityV (x; y) = ~V (�̂; y) + x�̂, follow now dire
tly from (6.19) and (6.20).Noti
e that, if r(�) is deterministi
, then Jensen's inequality gives(6:21) E � ~U �� Z0(T )B(T ) �+ yp�Z1(T )� � ~U � �B(T )EZ0(T )�+ yp�Z1(0)� ~U � �B(T )�+ y�(1� �); 8 (Z0(�); Z1(�)) 2 D:We shall use this observation to �nd examples, in whi
h the optimal strategy (L̂; M̂) ofTheorem 6.4 trades either not at all, or only at time t = 0.6.5 Example: r(�) deterministi
, y = 0. In this 
ase we see from (6.21) that~V (�; 0) = inf(Z0;Z1)2DE ~U �� Z0(T )B(T ) � � ~U(�=B(T ));and the in�mum is a
hieved by taking Ẑ0(�) � 1, i.e., by any pair (1; Ẑ1(�)) 2 D thatsatis�es 1 � � � R̂(�) = Ẑ1(�)=P (�) � 1 + �, if su
h exists. In parti
ular, one 
an takeẐ1(0) = (1 + �)p and �̂1(�) � �(�), in whi
h 
ase (1; Ẑ1(�)) 2 D if and only if(6:22) 0 � Z t0 (b(s)� r(s))ds � log 1 + �1� � ; 8 0 � t � T:Furthermore, from (6.10) and (6.5),(6.6) we haveX̂(T ) + f(Ŷ (T )) = I(�̂=B(T )) = Ĉ0 = xB(T ):23



All the 
onditions (6.4), (6.9) and the Assumption 6.1 are satis�ed rather trivially; and theno-trading-strategy L̂ � 0, M̂ � 0 is optimal, from Theorem 6.4 (and gives X̂(T ) = xB(T ),Ŷ (T ) = 0). The 
ondition (6.22) is satis�ed, for instan
e, if(6:23) r(�) � b(�) � r(�) + � ; for some 0 � � � 1T log 1 + �1� �:If b(�) = r(�) the result is not surprising { even without transa
tion 
osts, it is thenoptimal not to trade. However, for b(�) > r(�) the optimal portfolio always invests apositive amount in the sto
k, if there are no transa
tion 
osts; the same is true even inthe presen
e of transa
tion 
osts, if one is maximizing expe
ted dis
ounted utility from
onsumption over an in�nite time-horizon, and if the market 
oeÆ
ients are 
onstant { seeShreve & Soner (1994), Theorem 11.6.The situation here, on the �nite time-horizon [0; T ℄, is quite di�erent: if the ex
essrate of return b(�) � r(�) is positive but small relative to the transa
tion 
osts, and/or ifthe time-horizon is small, in the sense of (6.23), then it is optimal not to trade.Remark: In the in�nite time-horizon 
ase with 
onstant market 
oeÆ
ients, as in Shreve& Soner (1994), the ratio X̂=Ŷ of optimal holdings is a re
e
ted di�usion pro
ess in a�xed interval; more pre
isely, one trades only when this ratio hits the endpoints of theinterval, and in su
h a way as to keep the ratio inside the interval. In our 
ase, under theassumptions of Example 6.5, and with U(x) = log x, one obtains from (6.13) that(X̂(t) + R̂(t)Ŷ (t))=B(t) = (�̂Ẑ0(t))�1; 0 � t � T:Comparing the sto
hasti
 integral representation of (�̂Ẑ0(�))�1 with the equation (3.8),one obtains R̂(t)Ŷ (t)B(t) (�̂1(t)� �̂0(t)) = � �̂0(t)�̂Ẑ0(t) ; 0 � t � T:The last two equations implyX̂(t)=Ŷ (t) = �R̂(t) �̂1(t)�̂0(t)! ; 0 � t � T;24



provided Ŷ (t)�̂0(t) 6= 0, 8 t 2 [0; T ℄. While R̂(�) is a re
e
ted pro
ess in a �xed interval, itis not 
lear what happens to the se
ond fa
tor, either for �xed T or as T !1:6.6 Example: b(�) � r(�) deterministi
, y > 0. In this 
ase we 
an take Ẑ0(�) � 1 andẐ1(t) = p(1��) expfR t0 �(s)dW (s)� 12 R t0 �2(s)dsg (i.e., �̂1(�) � �(�)) to dedu
e from (6.21)that ~V (�; y) = inf(Z0;Z1)2DE � ~U �� Z0(T )B(T ) �+ yp�Z1(T )�= E " ~U  � Ẑ0(T )B(T ) !+ yp �Ẑ1(T )# = ~U(�=B(T )) + y�(1� �):It is easily 
he
ked that (Ẑ0(�); Ẑ1(�)) 2 D1; that Assumption 6.1 and (6.4), (6.9) hold;and that X̂(T ) + f(Ŷ (T )) = Ĉ0 = I(�̂=B(T )) = B(T )(x+ y(1� �)):In fa
t, the strategy L̂(�) � 0; M̂(�) = y1(0;T ℄(�);whi
h liquidates immediately (i.e., at t = 0) the position in the sto
k, leads pre
isely toX̂(t) = [x + y(1� �)1(0;T ℄(t)℄B(t), Ŷ (t) = y1f0g(t), 0 � t � T; and is optimal in A(x; y)for the problem of (6.2).6.7 Example: b(�) � r(�); U(x) = logx. In the 
ase of a logarithmi
 utility fun
tionU(x) = logx, the dual problem of (6.3) be
omes~V (�; y) = �(1 + log �) + E Z T0 r(t)dt+ inf(Z0;Z1)2DE "Z T0 �20(t)dt+ yp�Z1(T )# :We have been able to solve this last minimization problem only in the 
ase b(�) � r(�), whenwe 
an take �̂0(�) � 0, �̂1(�) � �(�) and thus Ẑ0(�) � 1, Ẑ1(�) = p(1��) expfR �0 �(s)dW (s)�12 R �0 �2(s)dsg as well as L̂(�) � 0, M̂(�) � y1(0;T ℄(�) (\sell sto
k holdings, if any, at timet = 0; otherwise do nothing"). Compared to the similar results of Examples 6.5, 6.6, theadvantage here is that b(�) � r(�) is allowed to be random.25



Proof of Lemma 6.3: For simpli
ity of notation, we shall take again p = 1 and prove,for any given � 2 (0;1) and (Z0(�); Z1(�)) 2 D:(6:24) E "Z0(T )B(T ) I  � Ẑ0(T )B(T ) !� yZ1(T )# � E " Ẑ0(T )B(T ) I  � Ẑ0(T )B(T ) !� yẐ1(T )# <1:From 
ondition (5.4) we have �I(�) � a+ (1� b)U(I(�)), 0 < � <1; and by subtra
ting(1� b)�I(�) from both sides: b�I(�) � a+ (1� b) ~U(�):It follows thatb�E " Ẑ0(T )B(T ) I  � Ẑ0(T )B(T ) !� yẐ1(T )# � a+ (1� b)E ~U  � Ẑ0(T )B(T ) !� by�Ẑ1(0)� a+ (1� b) h~V (�; y)� �y(1� �)i� b�y(1� �) <1;whi
h proves the se
ond inequality in (6.24).To prove the �rst inequality, we use a perturbation argument: for �xed but arbitrary0 < " < 1 and (Z0(�); Z1(�)) 2 D, let~Z(")i (�) := (1� ")Ẑi(�) + "Zi(�); i = 0; 1and note that ( ~Z(")0 (�); ~Z(")1 (�)) 2 D. Be
ause the pair (Ẑ0(�); Ẑ1(�)) 2 D attains thein�mum in (6.3), we have E(G(")) � 0, where
(6:25) G(") := 1" " ~U  � Ẑ0(T )B(T ) !� ~U  � ~Z(")0 (T )B(T ) !#+ �y" (Ẑ1(T )� ~Z(")1 (T ))= �B(T )I � �F"B(T )� (Z0(T )� Ẑ0(T )) + �y(Ẑ1(T )� Z1(T ))� �B(T )I ��Z0(T )B(T ) � (Z0(T )� Ẑ0(T )) + �y(Ẑ1(T )� Z1(T ))� � �B(T ) Ẑ0(T )I ��Z0(T )B(T ) �+ �y(Ẑ1(T )� Z1(T ));where F" is a random variable with values between Ẑ0(T ) and ~Z(")0 (T ); in parti
ular,lim"#0 F" = Ẑ0(T ). 26



Suppose �rst that Z0(�)=Z�0 (�) � K for some 
onstant 0 < K <1. Then, by Assump-tion 6.1,(6:26) E " Ẑ0(T )B(T ) I ��Z0(T )B(T ) �# � E " Ẑ0(T )B(T ) I ��KZ�0 (T )B(T ) �# <1;so that the last random variable in (6.25) is integrable. Then from Fatou's lemma, we have
(6:27) E " �B(T )I  �Ẑ0(T )B(T ) ! (Z0(T )� Ẑ0(T )) + �y(Ẑ1(T )� Z1(T ))#= E �lim"#0 �B(T )I � �F"B(T )� (Z0(T )� Ẑ0(T )) + �y(Ẑ1(T )� Z1(T ))�� lim inf"#0 E(G(")) � 0 ;the inequality (6.24) follows.Now for an arbitrary (Z0(�); Z1(�)) 2 D, de�ne �n := infft 2 [0; T ℄=Z0(t)=Z�0 (t) �1ng ^ T . Pro
eed as in the proof of Lemma 4.1, to obtain a sequen
e f(Z(n)0 (�); Z(n)1 (�))g 2D su
h that Z(n)0 (�)=Z�0 (�) � 1=n. Therefore, the �rst inequality in (6.24) is valid for(Z(n)0 (T ); Z(n)1 (T )), 8 n 2 N , and we 
an let n!1 and use Fatou's lemma to obtain theresult for (Z0(T ); Z1(T )):
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7. PRICING CONTINGENT CLAIMS.We indi
ate here a possible way of pri
ing 
ontingent 
laims in a market with transa
tion
osts. The minimal hedging pri
e is only an upper bound for the pri
e of a 
laim, and istypi
ally too high (see Example 4.3). Given a utility fun
tion U(�) and initial wealth x,Davis (1994) de�nes the fair pri
e of a 
laim in a market with fri
tions to be the pri
ewhi
h makes the agent's utility neutral with respe
t to a small (in�nitesimal) diversion offunds into the 
laim (if su
h exists). See Davis (1994) and Karatzas & Kou (1994) for thepre
ise mathemati
al formulations. Assuming y = 0, it 
an be argued, using the methodsof those papers, that the fair pri
e V (0) of a 
laim C = (C0; C1) in our setting should bethe expe
ted value of the dis
ounted 
laim evaluated under the optimal shadow state-pri
edensities of the dual problem, i.e., byV (0) = E �Ẑ0(T ) C0B(T ) + Ẑ1(T ) C1S(T )� ;provided that the dual optimization problem of (6.3) has a unique solution (Ẑ0(�); Ẑ1(�)).Noti
e that this pri
e does not depend on the initial holdings x in sto
k, if the solution tothe dual problem does not depend on �, as in Assumption 6.1. However, V (0) does dependin general on the return rate of the sto
k b(�). For example, if b(�) � r(�) and deterministi
,and the 
laim is a European 
all, then it follows from Example 6.6 that the fair pri
e is theBla
k-S
holes pri
e, independently of the utility fun
tion U(�) that is being 
onsidered. Ifb(�) � r(�) is nonnegative and small, the pri
e would be 
lose to the Bla
k-S
holes pri
e.Constantinides (1993) and Constantinides & Zariphopoulou (1995) show that the pri
e ofa European 
all, under not too large transa
tion 
osts, is always 
lose to the Bla
k-S
holespri
e. However, they use a di�erent de�nition of (bounds for) the fair pri
e, based onmaximizing utility from 
onsumption plus utility from terminal wealth, adjusted for thevalue of the 
laim at time t = T .
28



A. APPENDIX.The purpose of this se
tion is to prove the 
losedness property (4.14), for the set A0 of(4.10), using a method similar to the one in the appendix of Shreve, Soner & Cvitani�
(1995). To this e�e
t, let us 
onsider a sequen
e f(Un; Vn)gn2N � A0 
onverging in (L�2)2to some (U; V ) 2 (L�2)2, i.e.,(A:1) E�0 [(Un � U)2 + (Vn � V )2℄ �! 0; as n!1;and observe that, as a result, the expe
ted values E�0(U2n); E�0(V 2n ) are bounded uniformlyin n. Let also f(Ln;Mn)gn2N � A(0; 0) denote the 
orresponding hedging strategies, sothat with Xn(�); Yn(�) de�ned by(A:2) Xn(t) = �(1 + �)Ln(t) + (1� �)Mn(t) ; 0 � t � TYn(t) = Ln(t)�Mn(t) + Z t0 �(u)Yn(u)dW �0 (u); 0 � t � Twe have the following hedging and admissibility properties, for every n 2 N :(A:3) �Xn(T ) + (1� �)Yn(T ) � Un + (1� �)VnXn(T ) + (1 + �)Yn(T ) � Un + (1 + �)Vn � ;(A:4) Qn(�) := Xn(�) +R(�)Yn(�) is a P0 � supermartingale; 8 (Z0(�); Z1(�)) 2 D1:The question then is, whether we 
an �nd (L;M) 2 A(0; 0), so that (Ln;Mn) !(L;M) and (Xn; Yn) ! (X;Y ) � (X0;L;M ; Y 0;L;M), in a suitable sense, as n ! 1, andstill have the analogues of (A.3) and (A.4):(A:5) �X(T ) + (1� �)Y (T ) � U + (1� �)VX(T ) + (1 + �)Y (T ) � U + (1 + �)V � ;(A:6) Q(�) := X(�) + R(�)Y (�) is a P0 � supermartingale; 8 (Z0(�); Z1(�)) 2 D1:29



Let us start by introdu
ing some notation:(A:7) In(t) := Z t0 �(u)Yn(u)dW �0 (u)S�n(t) := E�0 [Un + (1 + �)VnjF(t)℄S�n(t) := E�0 [Un + (1� �)VnjF(t)℄;for 0 � t � T , and by noti
ing the inequalities (proved below):(A:8) S�n(t) � Xn(t) + (1 + �)Yn(t); S�n(t) � Xn(t) + (1� �)Yn(t); 0 � t � T(A:9) (�+�)Ln(t) � (1��)In(t)�S�n(t); (�+�)Mn(t) � (1+�)In(t)�S�n(t); 0 � t � T(A:10) jYn(t)j � 1 + ��+ � jIn(t)j+ jS�n(t)j+ jS�n(t)j�+ � ; 0 � t � T(A:11) sup0�t�T;n2N E�0�(S�n(t))2 + (S�n(t))2 + I2n(t)� =: C <1:From (A.8)-(A.11) it develops that the sequen
es fLn(�)gn2N ; fMn(�)gn2N ; fXn(�)gn2Nand fYn(�)gn2N are bounded in H, the Hilbert spa
e of progressively measurable, real-valued pro
esses �(t); 0 � t � T with E�0 R T0 �2(t)dt <1 and < �; � >= E�0 R T0 �(t)�(t)dt.Thus, there exist pro
esses L(�);M(�) and Y (�) in H, su
h that(A:12) Ln(�)! L(�); Mn(�)!M(�); Yn(�)! Y (�) weakly in H; as n!1(possibly only along a subsequen
e, whi
h is then relabelled). We 
an de�ne then(A:13) X(�) := (1� �)M(�)� (1 + �)L(�); and noti
e that Xn(�)! X(�) weakly in H:From Lemmata 4.5-4.7 in Karatzas & Shreve (1984), we 
an assume that L(�);M(�)have in
reasing, left-
ontinuous paths, and that(A:14) � Ln(t)! L(t); Mn(t)!M(t) as n!1weakly in L1(
;F(T );P�0); for a.e. t 2 [0; T ℄:�30



It follows from (A.14) that, for every h 2 (0; T ), we havelimn!1E�0(Ln(T )1A) � 1h limn!1 Z TT�hE�0(Ln(s)1A)ds = 1h Z TT�hE�0(L(s)1A)ds � E�0(L(T�h)1A);and letting h # 0:(A:15) limn!1E�0 (Ln(T )1A) � E�0(L(T )1A); 8 A 2 F(T ):Similarly,(A:16) limn!1E�0(Mn(T )1A) � E�0(M(T )1A); 8 A 2 F(T ):Re
all now the de�nition (A.7) of In(�) and de�ne the pro
ess(A:17) I(t) := Z t0 �(s)Y (s)dW �0 (s); 0 � t � T:We 
an show (see below) that(A:18) In(t)! I(t) as n!1 weakly in L�2; 8 t 2 [0; T ℄:It develops then, by taking weak limits in (A.2), that the pro
esses X(�); Y (�) of (A.13),(A.12) satisfy X(t) = �(1 + �)L(t) + (1� �)M(t) ; 0 � t � TY (t) = L(t)�M(t) + Z t0 �(u)Y (u)dW �0 (u); 0 � t � T:(This is veri�ed �rst for �xed t 2 [0; T ℄, and then for all 0 � t � T simultaneously by theleft-
ontinuity of the pro
esses involved.) In other words,X(�) � X0;L;M(�) and Y (�) � Y 0;L;M(�):To �nish the argument it remains to verify the properties (A.5) and (A.6) of hedging andadmissibility, respe
tively. 31



PROOF OF (A.5): Hedging. In view of (A.2), we may write (A.3) as(1� �)In(T )� (�+ �)Ln(T ) � Un + (1� �)Vn(1 + �)In(T )� (�+ �)Mn(T ) � Un + (1 + �)Vn;We want to dedu
e from this (A.5), or equivalently(A:19) (1� �)I(T )� (�+ �)L(T ) � U + (1� �)V(A:20) (1 + �)I(T )� (�+ �)M(T ) � U + (1 + �)V:Re
all from (A.16), (A.18), (A.1) that(�+ �)E�0 [M(T )1A℄ � (�+ �) limn!1E�0 [Mn(T )1A℄� limn!1E�0�f(1 + �)(In(T )� Vn)� Ung1A�= E�0�f(1 + �)(I(T )� V )� Ug1A� ; 8 A 2 F(T )and (A.20) follows; a similar argument gives (A.19).PROOF OF (A.6): Admissibility. Fix an arbitrary (Z0(�); Z1(�)) in D1; from (A.3)and Remark 3.6 we have Qn(T ) := Xn(T ) + R(T )Yn(T ) � Un + R(T )Vn; and (A.4) givesthen(A:21) Qn(t) � E0[Qn(T )jF(t)℄ � E0[Un +R(T )VnjF(t)℄ � ��n(t); 0 � t � T:Here(A:22) �n(t) := E0[jUnj+(1+�)jVnj jF(t)℄; �(t) := E0[jU j+(1+�)jV j jF(t)℄; 0 � t � Tare P0�martingales, with 
ontinuous paths and(A:23) sup0�t�T;n2N E0[�2n(t) + �2(t)℄ <1; E0[ max0�t�T j�n(t)� �(t)j℄2 �!n!1 0:Indeed, E0�2n(t) � E0�2n(T ) � 2KE�0 [U2n + (1 + �)2V 2n ℄ � KC� <1;32



where C� is a 
onstant depending only on � and supnE�0 [U2n + V 2n ℄, and K is an upperbound on Z0(T )=Z�0 (T ). This proves the �rst 
laim in (A.23); similar arguments, togetherwith Doob's inequality and (A.1), yield the se
ond 
laim.Consider now a set D � [0; T ℄ with meas([0; T ℄nD) = 0, for whi
h we have(A:24)�Xn(t)! X(t); Yn(t)! Y (t) and thus Qn(t)! Q(t) = X(t) + R(t)Y (t); 8t 2 D;weakly in L1(
;F(T );P�0) and thus also in L1(
;F(T );P0): �by virtue of (A.14) and (A.18). Clearly, from (A.21), (A.23) and (A.24),(A:25) Q(�) + �(�) � 0; on D:The supermartingale property (A.4) written asE0[�Qn(s)℄ � E0[�Qn(t)℄; 80 � s < t � T; n 2 Nfor every bounded, F(s)�measurable random variable � � 0, leads via (A.24) toE0[�Q(s)℄ �E0[�Q(t)℄, or equivalently(A:26) Q(s) � E0[Q(t)jF(s)℄; 8s < t in D:On the other hand, for t 2 D and arbitrary s 2 [0; t), let fskg be a sequen
e in D thatin
reases (stri
tly) to s, write (A.26) as Q(sk) � E0[Q(t)jF(sk)℄; 8k 2 N , and let k!1.The left-
ontinuity of Q(�), along with L�evy's martingale 
onvergen
e theorem (e.g. Chung(1974)) and the 
ontinuity of F (e.g. Karatzas & Shreve (1991), x2.8), yield(A:27) Q(s) � E0[Q(t)jF(s�)℄ = E0[Q(t)jF(s)℄; 8t 2 D; s 2 [0; t):Now 
onsider arbitrary 0 � s < t � T , as well as a sequen
e ftmg in D with s < tm andtm (stri
tly) in
reasing to t. We haveQ(s) + �(s) � E0[Q(tm) + �(tm)jF(s)℄; 8 m 2 N33



from (A.27) and the martingale property of �(�); re
all (A.25) and let m!1 to 
on
lude,from Fatou's lemma, the 
ontinuity of �(�) and the left-
ontinuity of Q(�), thatE0[Q(t)jF(s)℄ + �(s) = E0[Q(t) + �(t)jF(s)℄ = E0[limm (Q(tm) + �(tm))jF(s)℄� lim infm E0[Q(tm) + �(tm)jF(s)℄ � Q(s) + �(s); 8 0 � s < t � T;whi
h establishes (A.6). The proof of the 
losedness property (4.14) is now 
omplete.
Proof of (A.8): From (A.7), (A.3), (A.4) and Remark 3.1 with z = 1 + �, we haveR�(�) � 1+�, S�n(t) � E�0 [Xn(T )+(1+�)Yn(T )jF(t)℄ = E�0 [Xn(T )+R�(T )Yn(T )jF(t)℄ �Xn(t)+R�(t)Yn(t) = Xn(t)+(1+�)Yn(t), �rst for �xed t and then, by 
ontinuity of S�n(�)and left-
ontinuity of Xn(�); Yn(�), for all t 2 [0; T ℄ simultaneously. Similarly for S�n(�) (butwith z = 1� � in Remark 3.1).Proof of (A.9), (A.10): From (A.2) and (A.8), we obtain (A.9), as well asYn(t) � In(t) + Ln(t) � 1 + ��+ �In(t)� S�n(t)�+ �Yn(t) � In(t)�Mn(t) � � 1� ��+ �In(t) + S�n(t)�+ � ;whi
h lead to (A.10).Proof of (A.11): For S�n(�); S�n(�) we have in fa
t the stonger property(A:28) sup�2S;n2N E�0 [(S�n(�)2 + (S�n(�))2℄ � 2 supn2N E�0 [U2n + (1 + �)V 2n ℄ � K <1from Jensen's inequality and (A.7), (A.1), where S is the 
lass of stopping times of F withvalues in [0; T ℄. For �xed n 2 N , k 2 N , t 2 [0; T ℄, de�ne� (k)n := inffs 2 [0; t℄=jYn(s)j � kg ^ t; Y (k)n (s) := Yn(s) if s � � (k)n ; Y (k)n (s) = 0 if s > � (k)nI(k)n (s) := In(s ^ � (k)n ) = Z s0 �(u)Y (k)n (u)dW �0 (u); 0 � s � t:34



Now from the boundedness of �(�), (A.10) and (A.28) we obtainE�0(I(k)n (s))2 = Z s0 E�0(�(u)Y (k)n (u))2du � A+ B Z s0 E�0(I(k)n (u))2du; 0 � s � t;and from Gronwall's inequality E�0(I(k)n (s))2 � C where A;B;C are positive real 
onstantsthat do not depend on (k; n; s; t). For every n 2 N , we have � (k)n " t and I(k)n (t) =In(� (k)n )! In(t) a.s. as k !1; thus, from Fatou's lemma, E�0(I2n(t)) � C:Proof of (A.18): Consider an arbitrary � 2 L�2 and assume, without loss of generality,that E�0� = 0. Then � = R T0 �(s)dW �0 (s) for some (unique) �(�) 2 H, and E�0(�jF(t)) =R T0 �t(s)dW �0 (s) where �t(s) := �(s)1[0;t℄(s), for any given t 2 [0; T ℄. ThusE�0(�In(t)) = E�0 [E�0(�jF(t))In(t)℄= E�0 Z T0 �(s)Yn(s)�t(s)ds �!n!1 E�0 Z T0 �(s)Y (s)�t(s)ds = : : : = E�0(�I(t))from (A.12) and the boundedness of �(�), establishing (A.18).
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B. APPENDIX.We establish in this se
tion the existen
e of an optimal pair (L̂; M̂) 2 A+(x; y) for theexpe
ted utility maximization problem of (6.2):(B:1) V (x; y) = EU(Xx;L̂;M̂ (T ) + f(Y y;L̂:M̂ (T ))) <1:For simpli
ity of notation, we shall take again p = 1 and r(�) � 0. The key idea is to
onsider the set(B:2) Ax;y := fH 2 L�2 = 9(L;M) 2 A+(x; y) that hedges (H; 0)gof \terminal bank a

ount holdings hedgeable by admissible strategies", and to show that(B:3) Ax;y is a 
onvex, 
losed and bounded subset of L�2:These properties 
an be established by using the methodology of Appendix A, almost line-by-line (with very few, and obvious, 
hanges), so we leave the details to the 
are of thediligent reader. Let us denote(B:4) J(H) := �EU(H); H 2 L�2;we will show that the value fun
tion of (6.2) 
an be re-written as(B:5) �V (x; y) = infH2Ax;y J(H);and that the in�mum in (B.5) is attained (and thus is the supremum in (6.2)).It is 
lear that the fun
tional(B:6) J : L�2 �! R [ f+1gde�ned by (B.4) is 
onvex; let us verify that it is also proper (as indi
ated in (B.6)), i.e.,that(B:7) EU(H) <1; 8 H 2 L�2:36



Indeed, the fun
tion U(�) is sublinear: U(x) � a+ bx, 8 0 � x <1 for some a > 0; b > 0.Thus EU(H) � 
onst.(1 +EjHj) <1, sin
e E�0(H2) <1, be
auseEjHj = E�0 "jHj exp(� Z T0 ��0(s)dW (s) + 12 Z T0 j��0(s)j2ds)#= E�0 "jHj exp(� Z T0 ��0(s)dW �0 (s)� 12 Z T0 j��0(s)j2ds)#�  E�0(H2)E�0 "exp(� Z T0 2��0(s)dW �0 (s)� 12 Z T0 j2��0(s)j2ds) exp(Z T0 j��0(s)j2ds)#! 12� �E�0(H2)� 12 e 12k2T <1;where k is an upper bound on j��0(�)j of (3.6), Remark 3.1.Finally, the fun
tional J of (B.4), (B.6) is lower-semi
ontinuous in the topology of L�2;indeed, if fHngn2N 
onverges to H in the topology of L�2, we have(B:8) limn!1EjHn �Hj = 0:Thus, from Fatou's lemma, E[a+ bH �U(H)℄ � lim infn!1E[a+ bHn�U(Hn)℄; and weobtain the lower-semi
ontinuity property J(H) � lim infn!1 J(Hn) in 
onjun
tion with(B.8), (B.4).To re
apitulate: in (B.5), we are minimizing the 
onvex, proper, lower-semi
ontinuousfun
tional J , over the 
losed, 
onvex and bounded subset Ax;y of L�2. From a basi
 result of
onvex analysis (e.g. Ekeland & Temam (1976), p. 35) the fun
tional J attains its in�mumover Ax;y, at a point Ĥ of Ax;y. Now (Ĥ; 0) is hedged by some pair (L̂; M̂) 2 A+(x; y)(re
all (B.2)) with 
orresponding terminal holdings (X̂(T ); Ŷ (T )), whi
h implies(B:9) G := X̂(T ) + f(Ŷ (T )) = Ĥ:Indeed, if this were not the 
ase, we would have G � Ĥ a.s., and G > Ĥ with positiveprobability, be
ause of the hedging property of De�nition 2.1; moreover, sin
e (L̂; M̂) obvi-ously hedges (G; 0), this would 
ontradi
t the optimality of Ĥ and the stri
t monotoni
ity37



of U(�), provided that G 2 L�2 { but this follows from the remarks pre
eding the proof ofTheorem 4.2, sin
e G � 0 and (X̂(T ); Ŷ (T )) hedges (G; 0).It is now 
lear from (B.9) and the optimality of Ĥ that (L̂; M̂) is optimal for theproblem of (6.2), and that (B.5) holds; in parti
ular, V (x; y) = �EU(Ĥ) <1.A
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