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1 Introduction

Since the seminal work of Pardoux-Peng [19], there have been numerous publications
on Backward Stochastic Differential Equations (BSDEs) and Forward BSDEs (FBS-
DEs). We refer the readers to the book Ma-Yong [17] and the reference therein for
the details on the subject. In particular, FBSDEs of the following type are studied

extensively:

t t
Xo=at [ b(s,Xo, Yy Z)ds + [ ols, X, Vo)A
0 0

T T (1.1)
Vi= g(Xr)+ [ f(s,Xo Vs Z)ds = [ ZdWs
t t

where W is a standard Brownian Motion and b, o, f, g are deterministic functions. It
is well known that FBSDE (1.1) is related to the following parabolic PDE (see, e.g.,
13], [20], and [7))

Ut + %OQ(t? z, u>u$$ + b<t7 x,u, J(t7 X, U)UJC)U:B + f(tu x,u, 0<t7 x, U)Ux) = 07 (1 2)
u(T,z) = g(x);
in the sense that (if a smooth solution u exists)
}/;f = U(t,Xt)7 Zt = Ux(t,Xt)U(t,Xt,u(t,Xt)). (13)

Due to its importance in applications, numerical methods for BSDEs have re-
ceived strong attention in recent years. Bally [1] proposed an algorithm by using
a random time discretization. Based on a new mnotion of L%-regularity, Zhang [21]
obtained rate of convergence for deterministic time discretization and transformed
the problem to computing a sequence of conditional expectations. In Markovian set-
ting, significant progress has been made on computing the conditional expectations.
The following methods are of particular interesting: the quantization method (see,
e.g., Bally-Pages-Printems [2]), the Malliavin calculus approach (see Bouchard-Touzi
[4]), the linear regression method or the Longstaff-Schwartz algorithm (see Gobet-
Lemor-Waxin [10]), and the Picard iteration approach (see Bender-Denk [3]). These
methods work well in reasonably high dimensions. There are also lots of publications
on numerical methods for non-Markovian BSDEs (see, e.g., [5], [6], [12], [15], [24]).

But in general these methods do not work when the dimension is high.
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Numerical approximations for FBSDEs, however, are much more difficult. To our
knowledge, there are only very few works in the literature. The first one was Douglas-
Ma-Protter [9], based on the four step scheme. Their main idea is to numerically
solve the PDE (1.2). Milstein-Tretyakov [16] and Makarov [14] also proposed some
numerical schemes for (1.2). Recently Delarue-Menozzi [8] proposed a probabilistic
algorithm. Note that all these methods essentially need to discretize the space over

regular Cartesian grids, and thus are not practical in high dimensions.

In this paper we aim to open a door to truly Monte-Carlo methods for FBSDES,
without computing over all Cartesian grids. Our main idea is to transform the FB-
SDE to a stochastic control problem and propose the steepest descent method to solve
the latter one. We show that the original (coupled) FBSDE can be approximated by
solving a certain number of decoupled FBSDEs. We then discretize the approximat-
ing decoupled FBSDEs in time and thus the problem comes down to computing a

sequence of conditional expectations. The rate of convergence is obtained.

We note that the idea to approximate with a corresponding stochastic control
problem is somewhat similar to the approximating solvability of FBSDEs in Ma-
Yong [18] and the near-optimal control in Zhou [25]. However, in those works the
original problem may have no exact solution and the authors try to find a so called
approximating solution. In our case the exact solution exists and we want to approx-
imate it by using numerically computable terms. More importantly, in those works
one only cares for the existence of the approximating solutions, while here for prac-
tical reasons we need explicit construction of the approximations as well as the rate

of convergence.

The key to the proof is a new well-posedness result for FBSDEs. In order to
obtain the rate of convergence of our approximations, we need the well-posedness of
some adjoint FBSDEs, which are linear but with random coefficients. It turns out

that all the existing methods in the literature do not work in our case.

At this point we should point out that, unfortunately, our approximating decou-
pled FBSDEs are non-Markovian (that is, the coefficients are random), and thus we
cannot apply the existing methods for Markovian BSDEs. In order to make our al-
gorithm efficiently implementable, some further modification of Markovian type is

needed.



Although in the long term we aim to solve high dimensional FBSDEs, as a first
attempt and for technical reasons (in order to apply Theorem 1.2 below), in this
paper we assume all the processes are one dimensional. We also assume that b = 0
and f is independent of Z. That is, we will study the following FBSDE:

t
Xt:x+/ o (5, Xo, Y,)AW,;
0

T T (1.4)
Vi=g(Xr) + [ fls, X Yo)ds = [ Z,dW,.
t t
In this case, PDE (1.2) becomes
{ Uy + %a%t,x,u)um + f(t,z,u) = 0; (1.5)
u(T,z) = g(x);

Moreover, in order to simplify the presentation and to focus on the main idea, through-

out the paper we assume

Assumption 1.1 All the coefficients b, o, f, g are bounded, smooth enough with bounded

deriwatives, and o is uniformly nondegenerate.

Under Assumption 1.1, it is well known that PDE (1.5) has a unique solution u
which is bounded and smooth with bounded derivatives (see [11]), that FBSDE (1.4)
has a unique solution (X, Y, Z), and that (1.3) holds true (see [13]). Unless otherwise
specified, throughout the paper we use (X, Y, Z) and u to denote these solutions, and
C,c > 0 to denote generic constants depending only on 7', the upper bounds of the
derivatives of the coefficients, and the uniform nondegeneracy of 0. We allow C| ¢ to
vary from line to line.

Finally, we cite a well-posedness result from Zhang [23] (or [22] for a weaker result)
which will play an important role in our proofs.

Theorem 1.2 Consider the following FBSDE
X,=x+ /tb(w7 s, Xs, Ys, Zs)ds + /t o(w,s, Xs, Ys)dWs;
0 T 0 T (1.6)
Y=gl Xn) + [ fw.s. XY, Z)ds = [ ZaaWw;

Assume that b, o, f, g are uniformly Lipschitz with respect to (z,vy, z); that there exists

a constant ¢ > 0 such that
oyb, < —clby + 0,b, + 0, f.]; (1.7)
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and that
T
13 2 Bfa® +lg(w, 0+ [ [16(:t,0,0,0)P+[o(w,1,0,0) P+ (w,1,0,0,0)Pldt} < o0
Then FBSDE (1.6) has a unique solution (X,Y,Z) such that
2 2 e 2
B swp X7+ VY + [ |zt < CF,
0<t<T 0

where C' is a constant depending only on T, c and the Lipschitz constants of the coef-

ficients.

The rest of the paper is organized as follows. In next section we transform the
FBSDE to a stochastic control problem and propose the steepest descent method; in
§3 we discretize the decoupled FBSDEs introduced in §2; and in §4 we transform the

discrete FBSDESs to a sequence of conditional expectations.

2 The Steepest Descent Method

Let (€2, F, P) be a complete probability space; W be a standard Brownian motion;
T > 0 be a fixed terminal time; F 2 {Fi}o<t<r be the filtration generated by W
and augmented by the P-null sets. Let L?*(F) denote square integrable F-adapted

processes.

2.1 The Control Problem

In order to numerically solve (1.4), we first formulate a related stochastic control
problem. Given yy € IR and 2° € L%*(F), consider the following two dimensional

forward SDEs with random coeflicients:
Xo—x+/ (5, X°, YO)dW,;

t (2.1)
Yo —yo—/ s, X0, Y0) ds+/ AW,
0

and denote

Vo, 2°) = S B{|YP — g(X)}. (2.2)

DO | —

Our first result is



Theorem 2.1 Assume Assumption 1.1. Then

T
E{ sup [|[X; — X7 + |V — V)7 —i—/o |2, — Z?Pdt} < OV (yo, 2%).

0<t<T

Proof. The idea is similar to the four step scheme (see [13]).
Step 1. Denote

AV, 2V —u(t, XD); AZ 2 2 = gt X))ot X7, YY),
Recalling (1.5) we have

d(AY;‘/) - Zz?th - f(t7 X?? }/to)dt - uz(ta X?)O-<t7 Xz?a Y;fO)th

1
[t X7) + s (1, X7 (1, X7, Y, |dt

1
= AthVVt - {§umx(ta Xt())gz(ta X}?> Y;fo) + f(ta Xv?a Y;O):|dt
1
o [t (b, XD)? (8, X0 ult, XP)) S (8, X, (e, X))t
= AthWt — CKtA}/;gdt,

where
A 1
Qy = mumr(ta Xto)[Oj(ta Xz?a Y;O) - 0-2(t7 X?v U(t, Xz?))]
1

is bounded. Note that AYy = Y — g(X?). By standard arguments one can easily get

T
E{ sup |mft12+/0 AZPdt} < CE{|AY1[?} = CV (3o, 2°). (2.3)

0<t<T

Step 2. Denote AX, 2 X, - X?. We show that

E{ sup [AX*} < CV (o, 2°). (2.4)
0<t<T
In fact,
d(AX) = [o(t, Xo,ult, Xp) — o(t, X7, Y,)]dW.
Note that

u(t, X,) — Y? = u(t, X;) — u(t, X)) — AY,.
t t
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One has
d(AX,) = [a%AXt + atQAYt]th,

where a! are defined in an obvious way and are uniformly bounded. Note that AXy =
0. Then by standard arguments we get

B sup [AX,*} < CF{ /OT|AYt|2dt},

0<t<T
which, together with (2.3), implies (2.4).
Step 3. We now prove the theorem. Recall (1.3), we have

T
E{ sup \Yt—YtD|2~I—/O ]Zt—z?\zdt}

0<t<T

= B{ sup |u(t, X;) — u(t, X{) — A,

o<t<T
T
+ / Uy (tu Xt>0(t7 Xt7 ’U,(t, Xt)) — Uy (tv XtO)O'(t, Xt07 'LL(t, Xw?))
0

(1, X0 (1, X0, ult, XP)) — ust, X)o(t, X0, Y2) — AZ[ dt)

T
< CE{ sup [|AXt\2+|AYt|2]+/O |AX + |AYi + |AZ,[|dt}

0<t<T

S CV(?JO; Zo)v

which, together with (2.4), ends the proof. [ |

2.2 The Steepest Descent Direction

Our idea is to modify (yo, 2°) along the steepest descent direction so as to decrease
V' as fast as possible. First we need to find the Fréchet derivative of V' along some
direction (Ay, Az), where Ay € IR, Az € L*(F). For ¢ > 0, denote

uh = o+ 00y; 20 2 ) 4 6A;
and let X% Y% be the solution to (2.1) corresponding to (y3, 2%?). Denote:
t
VX0 = / 00V X0 4 00V Y)dW,;
0 t t
VYL = Ay~ (09X + fOVY s+ [ Azt
0 0
VV(yo,2°) = E{[YP — g(XP][VYE — ¢ (X)) VXD]}.
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where ¢! 2 ©(s, X2, YD) for any function ¢. By standard arguments, one can easily
show that

1 1
lim <[X{" = X{) = VA, Jim <[V - = 9Y,

0—0 5—0
.1
(151—>I% 6[v(y07 6) - V(y(); ZO)] = VV(yo, ZO);

where the two limits in the first line are in the L?*(F) sense.

To investigate VV (yo,2°) further, we define some adjoint processes. Consider
(X°,Y") as random coefficients and let (Y°,Y?, Z9 Z°) be the solution to the follow-
ing BSDE:

70 = [¥2 — g(X0)] — / FOV2 + 6970 ds — / Z0dW,;
V0 — ¢ (XYL — g(X2)] + / [FO¥2 4 0920 ds — / 204w,
We note that (2.5) depends only on (yo, 2°), but not on (Ay, Az).
Lemma 2.2 For any (Ay, Az), it holds true that
_ T _
VV(yo,2") = B{VPAy + / 20 Az}
0
Proof. Note that
VV (3o, 2°) = E{YLVY} — Y2VX{ ],
Applying Ito’s formula one can easily check that
dYOVY? — YV XD) = ZPAzdt + (- - )dW,.
Then
_ - T _ _ T
VV(yo,2") = B{VIVYY — VIV X} +/ Z0Azdt) = B{Y{Ay +/ 70 Azdt).
0 0

That proves the lemma. [ |

Recall that our goal is to decrease V(yo,2%). Very naturally one would like to

choose the steepest descent direction:

Ay = -y Az = AR



From now on we will always assume so. Then
_ T _
YV (0o, 2*) = ~B{VSR + [ 1202t} (2.6)
0

and it depends only on (yo, 2%) (not on (Ay, Az)).
Note that if VV (yo,2°) = 0, then we gain nothing on decreasing V (yo, 2°). For-

tunately this is not the case.
Lemma 2.3 Assume Assumption 1.1. Then VV (yo, 2°) < —cV (yo, 2°).
Proof. Rewrite (2.5) as

70 Y0+/ FOV2 4 0029) ds+/ Z0dW,;
~ @)
70 = ¢/ (X072 + / [fOF0 + 6920 ds — / Z0dW,,

One may consider (2.7) as an FBSDE with solution triple (Y;,Y;, Z;), where Y; is
the forward component and (Y}, Z;) are the backward components. Then (Y, Z?)
are considered as coefficients of the FBSDE. One can easily check that FBSDE (2.7)
satisfies condition (1.7) (with both sides equal to 0). Applying Theorem 1.2 we get

_ ~ T . _ T _
B{ sup (VP + V0P + [ 1200t} < CI3 = CE{VSR + [ 120at}.
0<t<T 0 0
In particular,
V O—EE Y212 < CEJYY)? TZ”d 2.8
(w0, 2°) = SE{VPP} < CE{YQP + [ |Z]dt}. (2:8)

which, combined with (2.6), implies the lemma. n

2.3 Iterative Modifications

We now fix a desired error level & and pick an (yo, z°). If we are extremely lucky that
V(yo,2°) < €%, then we may use (X, Y, 2%) defined by (2.1) as an approximation of

(X,Y,Z). In other cases we want to modify (i, 2°). From now on we assume
Vi, 2") >e%  B{|Yp —g(Xp)|"} < Ky; (2.9)

where Ky > 1 is a constant. We note that one can always assume the existence of Ky

by letting, for example, yo = 0, 20 = 0.



Lemma 2.4 Assume Assumption 1.1 and (2.9). There exist constants Cy, ¢, ¢; > 0,

which are independent of Ky and €, such that

AV (4o, 2°) £ V(. 2) = Vo, 2°) < =2V (o, 2°),

and

E{[Y} — g(X)I'} < K} = K§ + Coe?,
where, by denoting \ = 5
yi Sy — AV 2220 2D
and, for 0 <6 <1,
XB_:H/ (s, X YO)aW,;
Y = yo — OAYY / s Xf,Yf)der/Ot[zg — ONZ0dW;

Proof. We proceed in four steps.
Step 1. For 0 < # < 1, denote

VY = V) — g(X0)] - / [FOV? + 09 2%)ds / Z0aw;

VY = g (XD — g(X0)] + / FOV? + 00 70)ds — / 20dW;
t

VXY = / 0!V X! 4 oYW
0

YA A / VX + fOVYE)ds / Z0dW,;
where ! £ o(t, X?,Y?) for any function . Then
AV (yo,2") = E{[YTl - (X%)]2 — [V} — g(X2}
— / XO)[VYE — g (X3)V X8 Ldb.
Applying Lemma 2.2, we have
AV (yo, 2°) = —)\/ Ye}_/OOJr/OTZfZEdt}dG.
Step 2. First, one can easily show that

£ VO 4 (70t 1292 41202100 < Ot
{Sup[!t\+|t|]+(0[\t|+!t|])}_ 0-

0<t<T

10
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Denote
AX]E X! - X0 AV EY! Y.

Then .
AXP = / [ AX? + B AY AW,
0

_ t t _
AY? — —oAV? — / [029AX? + B2OAY?)ds — O / Z0dW,;
0 0

where o, 3" are defined in an obvious way and are bounded. Thus, by (2.15),

014 014 444 0|4 T 2012 0,2 444
E{ sup [|AX]|" +]AY) 1< XE{YI" + ( 1)) dt)'} < CKGA'. (2.16)

0<t<

Therefore,

E{|Y{ — g(XP)'} = B{|Y? — g(X9) + AY] — af AXG |}
< 1+ NIE{|YD — g(XD)[*} + CAE{|AYE|* + |A XY
< [1+ CNK. (2.17)

Step 3. Denote
AYP SV Y0 AV Y-V AZPEZ) - 70 AZP= Y- 7).
Then
AT = [AYY — alAXE] — / FIAY? + 0AZ0)d / AZ0dw,
~ [ g+ Ziadas T T
AV = o (XPIAYE - afAXG] + [ [FIAY! +oIAZ0ds — [ AZLaw,

T _ ~
HYR = g(XPIAG(0) + [ V2SI + Z8A0l)ds,

where

~ g(X%) — g(X2 A
o & DDA Af(0) 2 A0 XYY~ £(0 X0 YY)

all other terms are defined in a similar way. By standard arguments one has

B{ sup [IAT/?+ AT/ +/ IAZ0 + | AZO)dt)
0<t<
< OE{|AYT9|2 +[AXY)? + Y2 — g(XD)[P|Ag (0)?
T _ ~
+ [ [ITOPUALIE + 1AL + |22 P A2 + | Ac) ] dt)
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< CB{AYI + |AX + |V — g(XP)F|AXEP
T _ ~
+ IR0+ 12 AXY P + |AYS Pat

< CEx{ sup [|AX]|" + |AY/ "]} x

0<t<T
1 T _ ~ 2
B+ Y7 — g + ([ 1907 +1201a))
< CKIN[1+ K < OK )\,

thanks to (2.16), (2.9), and (2.15). In particular,
_ T _
E{|AY09|2+/ AZ{Pdt} < KN (2.18)
0
Step 4. Note that
- T _ _ T _
B0+ [ 202ty - B{VOP + [ 1201t}
0 0
_ T L
< B{IAYSY) + [ 1aZ020\at)
0
vaap T AN 70p2 L0 T Zop2
< CE{|AY]| +/ AZPdt) + SE{7) +/ 120 2dt)
0 2 0
< CKiN? + EE{\YOF + /T |Z} Pt }.
— 0 2 0 0 t
Then, by (2.8) we have

By + [ 2y > SE(V9P+ [ 1Z0Pdr) - ORI
0-+0 0 t <t = 9 0 0 t 0
> cV(yo, 2") — CK 2.

Choose ¢; = ,/ for the constants ¢, C at above. That is, A £ Then by (2.9)

@KQ
we get
0570 T 2050 oy_C2 ¢ 0
E{YE)YO +/ Z Z; dt} > cV (Yo, 2°) — 3¢ > §V(y0,z ). (2.19)
0
Then (2.10) follows directly from (2.14).
Finally, plug A into (2.17) and let § = 1, we get (2.11). |

Now we are ready to approximate FBSDE (1.4) iteratively. Set

w20, 2020, K2 Ei{Y2— g(X0)). (2.20)
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For k=0,1,---,let (X* Y* Y% Y* Z* Z*) be the solution to the following FBSDE:
Xk—x—Ir/ s, XE YW,

= [ X0 s+ [t

VE — [V~ g(XxE)] - / [FRVE 4 ok ZF)ds — / Zraw,;

VE— g (XE)YE — g(XE)] +/ [FAVE 4 o 28] ds—/ ZEaw,.

(2.21)

We note that (2.21) is decoupled, with forward components (X* Y*) and backward
components (Y* Y* Z¥ Z¥). Denote

A 1€ A 1€ A
Yk+1 = Yk — FYO]“, AR K ZF, K = K+ Coe?, (2.22)
i

where ¢, Cy are the constants in Lemma 2.4.

Theorem 2.5 Assume Assumption 1.1. There exists N < Ce~tlog(e™!) such that
V(yn,2Y) <%

Proof. Assume V(yg,2%) > ® for k = 0,---, N — 1. Obviously K} = Kj + Coke>.
Then by Lemma 2.4 we have

Co€

Vi #7) < [t = e moes Ve
0

Note that log(1 — ) < —x for x > 0. We get

N-1 CoE )

log(V (yn, 2™)) < log(V(0,0)) + log (1 - ———
l;) ( \/ KSL + Oo]{?€2

<(C - —
sz/k+€2_ C/ \/$~|—62

_ cN
:C—c{\/m— 1}: N T

Assume ¢ is small enough. Choose N = 7c "t tlog(e™1) for the c at above. We get
7e 1log(e™1)
\/70—15—1 log(e™!) +e72 4+ ¢71

log(V (yn,2")) < C —

71 -1 7
=C — og(c”) < C — -log(e™!) < —2log(e!) = log(¢?),
\/1 + 7clelog(e 1) + 1 3
which obviously proves the theorem. [ |
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3 Time Discretization

We now investigate the time discretization of the FBSDEs (2.21)

Fix an n and
denote

T
n

3| .

..7n'

3.1 Discretization of the FSDEs
Given yp € R and 2° € L*(F), denote

n,0 A n,0 A .
Xto =T }/;O = Yo;

n A n n n,
X2 X0+ o, XE0 YW = W], t e (t tial;

(3.1)
t
YO 20— ft, X0 YOt — 1) +/ LdW,,  t e (i, tip].
t;
Note that we do not discretize z° here. For notational simplicity, we denote
X?’L,O é XTL,O Y’I’L,O é Yn,O
7 - t; 1 - 4t -
Define
A 1 n n
Valwo, 2°) = SE{IYV" = g (XG0P} (3.2)
First we have
Theorem 3.1 Assume Assumption 1.1. Denote
10 £ B max[|X,, = X2 + Y, = Y +/ 12— Pdt}. (3.3)
Then o
" < OV (yo, 2°) + —. (3.4)
n

By Zhang [21], one has

C
E X —X.2 Y—Y2 < —.
i B sup (1 = X+ 1 - VPl < o
C'logn
E{ max su X, - X, 2P+, -V, ]2l < :
{0<z<n 1t<t<It)Z+1[| t tly ‘ t tl‘ ]} > n

E{Zo/t+| Etz/ | Z.ds)dt) <

Then one can easily show that

3\@
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Corollary 3.2 Assume Assumption 1.1. Then

C
max E{ sup [|X,— X"+, - Y"O|]}§C’Vn(yo,z0)+g;

Osisn—1 %4 <t<t;iy
Clogn
_ ﬂ,O 2 _ ‘n,O 2 0 .
E{0<rgl<6}3<1t 3&&1“& XPOP Y = YPT} < CValwo, 2°) + e
i+l 0 C
B [V B[ sy Py < Vit )+ ©
=0 "
Proof of Theorem 3.1. Recall (2.1). For i =0,---,n, denote
AX 2 X0 - X% AV 2V vl
Then
AXyg=0; AY,=0;
AXi = AX, + / ([0} AX, + BLAY] + [0, X0, Y) — o(t,, X2, Y,)]| Wi
AYier =AY, = [ [[a2AX; + GOV + [ X2Y0) - (8, X2, V)] a

where ozg € F;, are defined in an obvious way and are uniformly bounded. Then
E{|AXin[*}
tit1
= B{IAXE+ [ [[alAX + BIAY] + [t XD, ¥7) — ot X0, Y]] dt}
t;
12 Q 12 12 bt 0 002 0 102 )
< BUAXE + A + AP+ C | I = X+ Y = Y Pldt s
and

E{|AY; |}
C tit1
< B{AYE + ZIAXE + A +C [T IXD - X0+ V2 - YOt}
t;
Denote
A; £ E{|AX,]? + |AY;?).

Then Ay =0, and

. Ciu B0 02 0 102
Ai < [L+ A+ CB{ [7[1X) = X0P + |V — VP .

i
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By the discrete Gronwall inequality we get

n—1 iy
max 4 < 3 B [ X0 = X0+ | - vEPar)
=0 i

0<i<n

?

n—1 tis1 t t t
<O B{ [T [lols XOYOPds +| [ F(s, X005 + [ [0 ds]dt}
i=0 ti ti

ti t;

= 2 3 B o2
< CY E{|At] + | At +At/t_ 201}
< 1

N T
<Y, CE{/ |29 dt). (3.5)
n n 0

Next, note that

tj+1
[0} AX; + BIAY] + [o(t, X7, V) — o(ty, X2, Y2 |dWy;

5=0"1
St
7=0"t
Applying the Burkholder-Davis-Gundy Inequality and by (3.5) we get
c C T
2 2 02
B{ max[IAXiE + 1AV} < =+ ZB{ [ |:fPat},
which, together with Theorem 2.1, implies that
¢ C T
1" < CV(yo, ) + — + —EB{ [ |:0at},
< CV(yo, 2"y — + —B{ | || dt}
Finally, note that
V(yo,2°) < CVil(yo, 2°) + CE{|AX,L|2 + |AYn|2} = CVi(yo,2°) + CA,.

We get o .
"0 < OV (yo, 2°) + — + ~E / 01244,
< CValyo, 2°) + — 4+ —B{ [ |2 dt |
Moreover, noting that Z; = u,(t, X;)o(t, Xt,Y;) is bounded, we have
T T T
02 02 2
E{/O 29Pdt) < CE{/O \Z, — 20| dt}+0E{/0 Z4[dt}

< C’E{/OT 12, — 2dt) + C.

Thus o .
1" < CValyo, ) + — + —B{ [ |2, Pat}.
non 0
Choose n > 2C for the C' at above, by (3.3) we prove (3.4) immediately. u
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3.2 Discretization of the BSDEs

Define the adjoint processes (or say, discretize BSDE (2.5)) as follows.

on,0 2 yn n om0 & n n "

Yn 02 Yn 0 — g(an), Yn 0= g/(Xn’O)[Yn 0 — g(Xn70>]’

B - - ti . ti  _

TR0 = R0 _ frOgmOAL — o /t 7m0t — /t 7MW (3.6)
i—1 i—1

n,0 _ yvrn,0 n,0y, 1,0 n,0 ti ~n,0 ti ~n1,0 .
Y;—l - }/; + fm E—lAt + Uz Zt dt - Zt th7
ti—1 ti—1

where "° 2 o(t;, X, Y"0) for any function . We note again that Z™°, Z™0 are

not discretized. Following the direction (Ay, Az), the gradients are

VXt =0, VY]’ =Ay;

VX[ = VX 4 oV X 4 on OV Y AW
ti

VY = vy - [frOvXe0 4 frovy At + / " AndWy:
t4

7

VVn(yO, ZO) = E{[YT:%D . g(Xﬁ’O)HVYn"’D . g/(XVTLLp)VXrTLL’O]}‘

Then

VWil ) = E{YOVY0 - V00X
= B{[S + vty [U 2 [ Zp0aw)] x
tn-1 tn—1

tn
(VYRS = [fOVXRE 4+ frOVYSIAL + [ Azd Wy

tn—1

[{/mo n,O?mOA n,0 tn Zn,O tn >n,0
-\ - SSA oy [ ZdE | 2 ;| x
n—1 n—1

(VX0 + [0V X0+ o OV Y AW, |}

_ ~ tn  _
= B{VMVYES - VRUX + /t 270 Azdt + 130,

where

1>

i (2
102 opt [Tzt [ Azaw,
1—1 ]

12
+0 o OV XT + o VY AW, / Zdt
ti1
ti .
oy VX + fovyar [zt (3.7)
— [rOY OO X 4 OV AR,

xT
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Repeating the same arguments and by induction we get
0 T noo
VValyo, 2*) = B{Yg Ay + [ Z70Azde+ Y 1}, (3.8)
0 i=1

From now on, we choose the following “almost” steepest descent direction:

2

_ ti _ _
Ay L o, /t AzdW, & B, (Y0} — v, (3.9)
i—1

We note that Az is well defined here. Then we have
Lemma 3.3 Assume Assumption 1.1 and (3.9). Then for n large, we have
VVa(yo,2") < —=Va(o, 2°).

Proof. We proceed in several steps.
Step 1. We show that

_ ~ T  _ ~
EhmﬂM”F+MWW+A[MWF+MWW¢}Smme% (3.10)

0<i<n

In fact, for any 1,
_ ~ t; _ -
BV + 7200 + [ 120 1200 at)
i—1

_ _ (7. 2
)/inyo _ f:,OY'iTj?At _ O.Z,O Zf’odt’

:E{

ti—1

- _ ti . 2
+|Y0 4 Oy OAL 4 10 / Zt”’odt‘ }
ti—1

C 51,0(2 51,012 ¢ 1,012 1 b o0 5n,02
<1+ ZJB{YMOP £ (VO + BV 4+ E / ZrO2 4 | 200 2dt .
<[ BSR4 Py 4 BV B 1200 4120 Pt
Then
Ve Vel Lt 7N 7N C Vel Vel
B{TESP 4 72807 4 5 [ 1207 + 1Z00P)as} < [14+ TIR{ITPOP + 707},
ti—1 n
By standard arguments we get
_ - T .
wax {70 + 7R+ B{ [ 1208 + |20 Par)

< CE{|Y,?’°|2 + |§7n"’°|2} < OV,(yo, 2°).
Then (3.10) follows from the Burkholder-Davis-Gundy Inequality.
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Step 2. We show that
—n,0 T ono
Vo, 2°) < CE{|¥;" \2+/ 1Z70Pdt). (3.11)
0
In fact, for t € [t;,t;41), denote m(t) 2 t; and let
_ _ i t t
Y]—fn,[) éY;n’O—Ff;L’OY;n’O[t—ti] +O_n,0/ Z;L’Ods—i-/ Z;L,OdWs;
Y/tn,() nO_anYnO[t_t nO/ Zn0d8—|—/ ZnOdWs,
Then one can write them as

_ _ t
A A GOV
n,0 / n,0\ vy 1,0 T n,0 1,0 1,0
F0 = g+ [ () - Vs

Applying Theorem 1.2, we get
1 _
Vil %) = L E{T20F)
_ T _ T 3
< CE{IYOP + [ 120t + [ ¥ — i Pat)
0 0
—n.012 T_02 n—1 ti+1_0 — 02
E{|Y;") +/ |20 dt+Z/ V0 — V02t
i=0 7t
< CB{|yy |2+/ 12024
tip1  _
+CNZ [ |At|2+At/ Z”’0|2dt+/ U2 Rar] )
i=0 t;
1,012 >n,012 C 0
< CB{VpOP + [ 120°Pdt) + Vi, ),
0 n

thanks to (3.10). Choose n > 2C we get (3.11) immediately.
Step 3. Note that

E{ /OT |Az + Zf70|2dt} = ZZ:E{’ /:1 Az dWy + /t;il vaOth’2}

n _ _ _ ti . ty  _
=S B -9+ VY 4 OVAL 4+ om0 B /t U + /t ©zraw|')
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n

{0 p| [ zra - B[ o)
=1 i—1 i—1

n t; B C
CAtZE{/t |20 Pdt} < EVn(yo,zo). (3.12)
i=1 i1

IN

Then
B{Y;Ay + /O ! Z70 Azt + B{|V)? + /0 ' |20 Pdt |
= [B{ /OT 280\ Az + 27 )t ||

< CE%{/OT |Zf’°[2dt}E§{/OT Az + 2102t

—— |C C
S C vn(yo; ZO) gvn(y(% ZO) = ﬁvn(y(b ZO)'

Assume n is large. By (3.11) we get
_ T 1 . T _
E{Y;""Ay + / 710 Nzydt} < —§E{|11)”’0|2+ / |Z{0Pdty < —cVa(yo, 2°). (3.13)
0 0

Step 4. It remains to estimate I"". First, by standard arguments and recalling
(3.9), (3.12), and (3.10), we have

T
B max IVXTOP + 9V} < CB{ayP + [ 1A= )

_ T _ _
< CE{|Y;"? +/0 1Az + ZOP +1Z7°P)dt} < CVa(yo, 2°). (3.14)

Then

< n,0 C & /ti ~n 019 /ti 5
E E{L> < — E )
‘izl = \/ﬁ; {tHIZt Pt + | 1Az[dt

HIVXSP + (VYR B (| AWPY + A7) + V27 P AL
C

T ~ — j—
< \/ﬁE{/o 1217 + |Ztn’0|2—|—|Azt—|—Zf’0|2]dt}
"—Q max E{|VX.”’O|2 + |Vyn,0‘2 + |Yn,0|2}
\/ﬁ 0<i<n i—1 i—1 i—1
C

NG

Recall (3.8). Combining the above inequality with (3.13) we prove the lemma for
large n. |
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3.3 Iterative Modifications

We now fix a desired error level . In light of Theorem 3.1, we set n = 2. So it

suffices to find (y, z) such that V,,(y,2) < &% As in §2.3, we assume
Valyo, 2) > €% B{|Y; — g(X70)*} < K. (3.16)

Lemma 3.4 Assume Assumption 1.1 and (3.16). There exist constants Cy, co, ¢ >

0, which are independent of Ky and ¢, such that

Co&
AV (90, 2°) £ Va1, 21) = Vialwo, 2°) < — Vi (o, 2°), (3.17)
0
and
E{Y;" — g(XpH|'} < K 2 K+ Coe?, (3.18)

where, recalling (3.9) and denoting A = %7

h = Yo+ AAy; 7/ 2 20+ Az (3.19)

and, for 0 <0 <1,

Xp0 2 a Y 2y + 00Ay;
n A n n n
X,L+’91 = X@ b -+ O'(ti, Xz ’9, Y; ’H)AWiJrl; (320)
n70 é nae 77,,9 7’7,79 ti+1
iy =Y = f(, X YA+ (2 + OAAz|dW.
ti

(2

Proof. We shall follow the proof for Lemma 2.4.
Step 1. For 0 < 0 <1, denote

Vil 2V — g0 Vit 2 g (G = g(0);

_ _ _ (7 t;  _

Vil =yl — Oy IAg — g /t 7m0t — /t 20w,
1—1 1—1

)

~ ~ _ ti . ti L
AR LR N AP / 20 g — / Zr0aw,,
ti—1 ti—1
and
VXt =0, vY=Ay;
VXL = VX 4 o'V X 4 o VY AW
tit1
YA GRS v LR i 0 RS 40 o G VIV / RN
ti

x
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where ¢’ 2 (t;, X Y for any function ¢. Then
AValyo, 2°) = E{IV = g(XDFF = 5 = (X}
= [ B - g ()Y,
By (3.8) we have

1 n,0 T 5 0 - 6
AV (4o, 2°) = A / B{V; Ay + / 70 Azdt + 3 17} do (3.21)
0 0 i=1

where

1>

0 b s
e / AzdW,
ti—1 ti—1
+om [0V X +a"9VY”9AW/ Zr0dt
—op IO X - O A /t Lz (3.22)
— Iy YOV XL+ [OVY A
Step 2. First, similar to (3.10) and (3.12) one can show that
_ ~ T 2
n,014 n,014 2 7,012 2 4
E{ max [V + 771" + (/0 1Z°F + 1271 + |A%[?)dt) '} < CKy. (3.23)

Denote
AXP 2 XD - XM AV S Yy,
Then
AXP? =0, AYS"? = 0XAy;
AXT = AXY 4 [0 "AXTY + B AV AW
A = AV — (02 AXPY + BOAY AL — O /t AWy

where a‘g‘ﬁ, ﬁf’e are defined in an obvious way and are bounded. Thus, by (3.23),

E{0n<1la<>;[|AX”9|4 +[AYM} < coNE{|Ayl* + (/OT |Azt|2dt)2} < CKAN
(3.24)
Therefore,
E{IV;" = g} = B{IY;"" — g(X)) + AV, + o 'AX| )
< 1+ NIE{Y0 — (X720} + CAZE{AY 1t + | A X))
< [1+CN]K;. (3.25)
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Step 3. Denote

n,0 A rn,0 N0, om0 A <m0 1,0,

7n,0 & Znb 7 onb & Znfb  5n0
AZM = 700 — 200 AZpt = 200 — 2

Then
A =AY — a AX
AV, = g (X [AYM — ap P AXRO) + [V = g(X ) Ag'(n, 0);
_ _ _ ti ~ t; _
AV = AP = oAVt —opt [T Az [T Az aw,
ti1 ti—1
_ i .
AN HONE R A N
.0 .0 —tiiel b one b ene
AV = AV 4 oAV + op? [ Az - [ Az aw,
ti1 ti1
_ (2
FYOAOAE + / Zr0dt A"
ti—1
where
Xn,@ _ Xn,O
o £ IR I A 2 (0, X7 ) — ol XX

" AXY

and all other terms are defined in a similar way. By standard arguments one has

1,02 n,0|2 T —n,0 2 1,02
B{ max AV + |AVP) + [CIAZMR + A2 Plat)
< CE{AY P + [AXDOP 4 Y0 — g(X70)P|Ag (n, 0)
n B t; ~
+ 30 [IVEVPIAS? + |AfP1AL + /t |20 Pdt]| Aoy + | Aoz ]|}
=1 i—1
< CE{|AY +[AXROP 4 V0 — g(X10)P|A X2
noo_ ti .
SIVEA + [ |2 P |AXP + A )
i=1 i—1

+
< C’E%{ max [|AX?

0<i<n

4 + |AY;”’0|4]} «

T
1 n,0 n,0\ |4 =04 51,012 7, 2
BE{L+ Y0 = g(X) [ + ma |7+ ([ 1270 at)")
< CKIN[L+ KJ) < CKGA?,

thanks to (3.24), (3.16), and (3.23). In particular,
om0 T\ onb
B{JAYS")? + / AZPPdt) < CEIN (3.26)
0
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Step 4. Recall (3.12). Note that
_ T _ _ T
B{Y Ay + / 73 Azdt) + E{| V3" + / 1200 dt)|
0 0
o T _ _ _
< B{AY Y0+ [T IAZRO1Z00 + Az + 20t}
_ T _ 1 . T
< CE{|AY;? +/O IAZMP + 1Az + Z7°)dt ) + 5E{|Y0”’°|2 +/O |21 Pt }
C 1 (- T
< CKIN + —Valyo, 2°) + S BT3P + / 200t
n 2 0
Then
on,o T ~n,0 1 1,02 T ~n,0|2 442 g 0
E{Yy Ay + | ZMAzdt) < —SE{Y5P+ [ 1Z7Pdt) + CEN + = Va(yo, 2°).
0 2 0 n
Choose n large and by (3.11) we get
\ 1,0 T —~n,0 0 442
E{YO» Ay —|-/ A Aztdt} < —cViul(yo, 27) + CKGA~. (3.27)
0
Moreover, similar to (3.14) and (3.15) we have

n n = n C
B{ g [V 4 V3P < OValun, 2 1S BUY < vl )

Then by (3.27) and choosing n large, we get

_ T _ n
E{Y;"' Ay + /0 ZP0 Nydt + 3 I} < Vi, 2°) + CKGA2.

=1

Choose ¢; = \/3& for the constants ¢, C' at above. That is, A = \/Q/—CE;?) Then by (3.8)
and (3.16), we have

c CoE
Avn(y(%ZO) < A[_*Vn(y% ZO)] = - OQVn(y(bZO)'
2 K;
Finally, plug A into (3.25) and let 6 = 1, we get (3.18). n

We now iteratively modify the approximations. Set

(AN

w20, 220, K2 B[y — g(X"0)"). (3.28)

For k =0,1,---, define (X™k Yk ynk ymk znk zmky as follows:
Xt S Yt Sy
n A n n n
X1 = X ot XN Y AW (3.29)
tit1
)/z:L-’f é Y;mk - f(tw Xz'n’ka }/zn’k)At + : Ztdeh

t;
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and
onk D yn n Ornk O n n n
Yn k= Yn k g<Xn7k)7 Yn k= g/(XnJC)[Yn b g(ank)L
Yn,k o Yn,k o n,kY?’L,kA _nk ti Zn,kd . ti Zn,de .
i-1 = ¥; [ Y oAt — oy, LG t L ts (3.30)

1

~ ~ _ t; . t; .
Yk = Yk g prkymh Ap g gk / Zrkae— [ Zrkaw,
ti—1

ti—1

Denote
_ t; _ _
A 2 =Ygk [T Ackaw, & B (17 - v (3.31)
ti—1
and
A C1E A 1€ A
Yrt1 = Y + %Aykﬁ 7= 2+ %Azf; Ky = Kj + Coe?, (3.32)
k k

where ¢y, Cy are the constants in Lemma 3.4. Then follow exactly the same arguments

as in Theorem 2.5, we can prove

Theorem 3.5 Assume Assumption 1.1. There exists N < Ce'log(e™!) such that

Vn(yN> ZN) S 52-

4 Further Simplification

We now transform (3.30) into conditional expectations. First,
nk A 1 ti+a 1 n,k
Sk 8 EEi{/t_ sty = BV AW},

Second, denote

1
M} £ oxp (o7 AW, = Z[olhE PAY). (4.1)
Then
Y/fi’f = Ez—l{Mznk?;nk} + f;ﬁ%k—lyﬁfAt;
U;L,’f—lyiﬁ’f + U;L,’f—lﬁ‘@k = U;L,’f—lEz’—l{Yz‘n’k} + U;L,’f—lEi—l{?z‘n’k}
+[UZ,’£1f:Z’ili1 - U;L,’ffl ;’i’il]?ﬁfAt-
Thus
— ok 1 —n.k 1 Y n,k
Vi = —— e [ B {Y = o B (Y M = 115
1+ fy7i,1At Ogi—1 (4 2)

f/ﬁ’f = Ez—l{ManY/@nk} + f;%]i1}7¢z7fAt-
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When o7 = 0, by solving (3.30) directly, we see that (4.2) becomes

Vel 1 Yol n Yo
= [Bia V) — o B (Y AW

y,i—1

n,}k
1 + fy,z—lAt (43)

Vi = B (Y + fYTAL

Now fix € and, in light of (3.4), set n 2 72, Let c1, Cy be the constants in Lemma

3.4. We have the following algorithm.

First, set
Xg0 22 Y20
X E X0 4 o(t, XY ) AW
VY S YO - f( XY A
and

Y

n.0 A A 1 n n
G020 Ko = B - g(X3)[

For k= 0,1, if E{|Y,* —g(X¥)]?} < &2, we quit the loop and by Theorems 3.1,
3.4, and Corollary 3.2, we have

noloetig
E{ max [| X, — X2 4 |V, — V)] + Z/ i | Z, — Zin’k|2dt} < Ce”.
i=0 't

0<i<n

Otherwise, we proceed the loop as follows:

Step 1. Define (Y* Y™*) by the first line of (3.30); and for i = n,---, 1, define
(Y5, Y0 by (4.2) or (4.3).

Step 2. Let A SO L — Define (Xmkt1 ymktl snktly by

\/Kg + O()kSQ

k+1 A k+1 A k n.k
Xt = YT SV - Y

Xﬁ’iﬂ = XM ot XL Y AW (4.4)

i+1
YT = Y (s XPE YA 4 M AV - Vi

and
nk+1 &
! 2

BV AW (4.5)

B~

z

26



We note that in the last line of (4.4), the two terms stand for [/*' zFdIW, and
fttj“ AzEAW;, respectively.

By Theorem 3.4, we know the above loop should stop after at most C'e™! log(s™1)
steps.
We note that in the above algorithm the only costly terms are the conditional

expectations:

EAY!Y, EBAYLYY, E{AWLYSLY,  EA{MIYIAY or E{AW,.Y/PT).
(4.6)

By induction, one can easily show that

Ymk = u?k(XSL’k? e 7XTL7k),

K3 3

for some deterministic function w/"*. Similar properties hold true for (Y;"*,¥/"").
However, they are not Markovian in the sense that one cannot write ;™" V% vy,
as functions of X' * only. In order to use Monte-Carlo methods to compute the
conditional expectations in (4.6) efficiently, some Markovian type modification of our

algorithm is needed.
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