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Abstract

We consider a market in which traders arrive at random times, with random private
values for the single traded asset. A trader’s optimal trading decision is formulated in
terms of exercising the option to trade one unit of the asset at the optimal stopping time.
We solve the optimal stopping problem under the assumption that the market price
follows a mean-reverting diffusion process. The model is calibrated to experimental
data taken from Alton and Plott (2010), resulting in a very good fit. In particular,
the estimated long-term mean of the traded prices is close to the theoretical long-term
mean at which the expected number of buys is equal to the expected number of sells.
We call that value Long-Term Competitive Equilibrium, extending the concept of Flow
Competitive Equilibrium (FCE) of Alton and Plott (2010).

Keywords: trading with private values, equilibrium price, optimal exercise of options, ex-
perimental markets, tick-by-tick trading.
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1 Introduction
This paper models optimal trading of individuals at microstructure level, by formulating the
decision to trade as na optimal stopping problem. We adopt the setting of Alton and Plott
(2010) of a market with a single asset, in which buyers and sellers arrive at random times,
with random private values for one unit of the asset. A trader has an option to exchange
the private value for the market price (or vice-versa), at time of her choosing, during a time
interval of random length after which the option expires. Thus, assuming the traders are
risk-neutral, the decision problem is the one of choosing the optimal stopping time at which
the trade will take place, during a time interval of random (exponentially distributed) length.
This makes it equivalent to the problem of optimally exercising an American option over a
random horizon, with the market price as the underlying asset. The option is of the put type
for the traders who consider buying the asset, and of the call type for the traders who consider
selling the asset.

If the underlying asset follows the geometric Brownian motion (GBM) process, solving
such problems is standard in the option pricing theory; see, for example, Carr (1998) and
Shreve (2005). Extensions of the GBM model and/or different optimization objectives when
looking for the optimal time to sell or buy a stock have been considered, among others, by
Guo and Zhang (2005), Peskir and du Toit (2009), Shiryaev, Xu and Zhou (2008), and Zhang
(2001). However, while exponential growth that the GBM process exhibits on average may be
appropriate for long-term horizons, it is not realistic for very short-term, tick-by-tick trading.
Moreover, it is not consistent with the market in which the private values of the traders are
drawn in an iid manner from a fixed distribution. Instead, a process which exhibits mean-
reversion is much more appropriate, and we model the market log-price as a mean-reverting
Ornstein-Uhlenbeck process. This makes the optimal stopping problem harder than in the
GBM case, but we are able to solve it semi-analytically, in terms of parabolic cylinder functions
and up to one-dimensional integration.

Using the fact that we can compute the optimal trading strategies for the traders, in
the second part of the paper we calibrate this model to the price data generated in trading
experiments by Alton and Plott (2010). More precisely, we do the following: we estimate all
the parameters of the mean-reverting process using (a part of) the price data, except for the
long-term mean parameter. Then, we compute the value of the long-term mean for which the
expected number of optimal buys is equal to the expected number of optimal sells in the model.
We call this value Long-Term Competitive Equilibrium, or LTCE. We find that this value is
close to the estimated value of the long-term mean, and that the price data is concentrated
around it. In contrast, Alton and Plott (2010) introduce two notions of equilibrium price value:
Temporal Equilibrium (TE) value at which there is an immediate, local (in time) clearing of
the market, and Flow Competitive Equilibrium (FCE), at which the clearing is in expected
value sense, over the whole time period of the experiment. Our LTCE value can be thought of
as a generalization of FCE that accounts for the mean reversion feature of the price formation
process.

While Alton and Plott (2010) find that the prices hover somewhere between TE and FCE,
we find that they are mostly concentrated around LTCE, providing justification for defining
LTCE as the equilibrium price. While LTCE seems to be a good measure for the equilibrium
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price, it has the disadvantage, relative to TE and FCE, that its value depends on how exactly
one estimates the remaining parameters of the price process, and that the numerical procedure
for computing it is much more involved than for computing TE and FCE. Nevertheless, we
find it worthwhile developing a definition of a single equilibrium price that would fit well the
average price pattern, as opposed to defining two equilibrium values between which the prices
on average fluctuate; and even more so if the new definition arises from optimal behavior of the
traders in a plausible model. Moreover, importantly, in the numerical examples the computed
value of the LTCE is very stable relative to the part of the data sample chosen to compute it.
More precisely, it does not make a big difference in the computed value of the LTCE whether
we use a quarter, a half or the full sample of our data points. This is to be contrasted with
the estimated value of the long-term mean, which is very sensitive to the chosen sample.

Trading a single asset using market orders or limit orders has been modeled by a number
of papers in the literature. Most of those construct equilibrium strategies when trading is
performed by different types of traders, such as market makers, informed traders, noise traders,
patient and impatient traders, and so on. This approach is taken in Parlour (1998), Foucault
(1999), Biais, Martimor and Rochet (2000), Parlour and Seppi (2003), Foucault, Kadan and
Kandel (2005), Goettler, Parlour, and Rajan (2005), Back and Baruch (2007), Rosu (2009),
Biais and Weill (2009), and Biais, Foucault and Moinas (2010) among others. Then, there
are partial equilibrium models like those of Avellaneda and Stoikov (2008), Kuhn and Stroh
(2009), and Cont, Stoikov, and Talreja (2008), that, like this paper, take the price process as
given, and find the best strategy for the single trader. Perhaps most similar in spirit to the
theoretical part of our paper is Pagnotta (2010), who, in a different and more complex model,
also assumes that there is a given price for the asset, and what the traders decide on is the
frequency of their trades. However, in that model there is a “true asset value" about which
the traders have asymmetric information, and they also decide whether to submit market or
limit orders. In contrast, in our model the orders are essentially market orders, and there is
no true asset value, rather, the traders differ by their private values, not by information they
have. Our aim is different than that of the latter papers – we are not interested in providing
sophisticated algorithms for a trader to follow, or in finding how the limit order book features
depend on the level of information traders have. Rather, as mentioned above, we examine
whether a relatively simple model with mean reversion and optimal timing of trade describes
well, at least in aggregate, the price formation in the experimental market designed to mimic
the model.1

We present the theoretical model in Section 2, compute the value of the option to trade
and the probability of exercising that option in Section 3, calibrate the model in Section 4
and conclude in the last section.

1It should be noted that the reason why we opted for fitting the model to experimental data rather than
real market data is that in the experiments the private values are known, in fact, chosen by the experimenter,
while it would be hard or impossible to estimate what they are in real markets. However, see the conclusions
section for a possible future research on reverse-engineering the distributions of private values from real market
data.
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2 Model
There is a single asset to be traded in single units, and buyers/sellers decide at what time t to
buy/sell, submitting orders at the market price Pt. Let viB denote the “private value" for buyer
i, who lives during a random interval IBi = [sBi , tBi ], where sBi and tBi − sBi are independent
and exponentially distributed. Similarly for the sellers. It is assumed that viB, viS are two iid
sequences, also mutually independent.

By private value, we mean that (risk-neutral) buyer i’s problem is

max
τ∈IBi

E
[
e−r

B
i τ
(
viB − Pτ

)+
]

(2.1)

and (risk-neutral) seller j’s problem is

max
τ∈ISi

E
[
e−r

S
i τ
(
Pτ − vjS

)+
]

(2.2)

where rBj , rSj are the traders’ discount rates, and τ is the time to maturity, which is modeled
below as an exponentially distributed random variable.

The above optimization problems are equivalent to the problem of pricing American options
with random maturity. Assuming vik is a constant for each buyer/seller and that the price
process P of the asset is mean-reverting, more precisely, that logP is an Ornstein-Uhlenbeck
process, then this problem can be solved and we can compute the optimal time to trade for
each buyer/seller, as we will see next. In order to calibrate the model to the experimental
data of Alton and Plott (2010), in addition to optimal exercise levels, we also need to find the
formula for the probability that the buyer/seller will make a transaction during his lifetime
interval Iki given the initial price P0.

3 Random maturity American options with mean-reverting
underlying

We assume that the mean-reverting asset follows the exponential Ornstein-Uhlenbeck (OU)
process. More precisely, let Xt be the log-price of this asset, Xt = logPt, then Xt is given as
the solution to the stochastic differential equation

dXt = κ(θ −Xt)dt+ σdWt, (3.3)

where κ > 0 and Wt is a standard Brownian motion process. This is a well-known Gaussian
process used in finance to model economic variables which tend to fluctuate around a long-term
mean θ. Parameter κ measures the speed of mean-reversion, and σ is the variance parameter.

Before starting computations needed to solve the model, let us present a brief outline of
the model’s timeline and of what we want to do in the rest of the paper:

• A trader with a private value arrives.
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• She computes the optimal level at which to trade, assuming OU price process.

• Based on these levels, we compute the expected numbers of buy transactions and of sell
transactions.

• We find the long-term mean θ (LTCE) that makes those two numbers equal.

3.1 Put and call values
We need to introduce some notation first. Let D−ν(z) denote the so-called parabolic cylinder
function and

ϕ(X) := ez
2/4D−ν(z) (3.4)

ψ(X) := ez
2/4D−ν(−z) (3.5)

Also introduce the Wronskian of ϕ and ψ:

W (x) := ϕ(x)ψ′(x)− ϕ′(x)ψ(x)

We need to compute the value of (2.1), which is the value of the American put with strike
price

K = viB

and for which the maturity date τ is random (and independent of everything else), with density

Pr{τ ∈ dt} = λe−λtdt. (3.6)

Here, λ = 1
T

and T is the mean maturity of the put. Let P (X) denote the value of such an
American put option, where X is the initial value of Xt. We have

Proposition 3.1. The value P (X) of the random maturity American put with mean-reverting
underlying is given by

P (X) =


Cϕ(X), if X ≥ X0 ≡ logK
Aϕ(X) +Q(X), if X ∈ (X,X0)
K − eX , if X ≤ X

(3.7)

where

Q(X) = ϕ(X)
∫ X
X

2ψ(s)
σ2W (s)

λ(K − es)ds+ ψ(X)
∫ X0

X

2ϕ(s)
σ2W (s)

λ(K − es)ds, (3.8)

A = (K − eX)ψ′(X) + eXψ(X)
W (X)

(3.9)

C = A+
∫ X0

X

2ψ(s)
σ2W (s)

λ(K − es)ds (3.10)
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and the critical value X satisfies

(K − eX)ϕ′(X) + eXϕ(X)
W (X)

= −
∫ X0

X

2ϕ(s)
σ2W (s)

λ(K − es)ds (3.11)

Similarly, we have for the American call value in (2.2):

Proposition 3.2. The value C(X) of the random maturity American call with mean-reverting
underlying is given by

C(X) =


Eψ(X), if X ≤ X0 ≡ logK
Bψ(X) +Q(X), if X ∈ (X0, X)
eX −K, if X ≥ X

(3.12)

where

B = eXϕ(X)− (eX −K)ϕ′(X)
W (X)

(3.13)

E = B +
∫ X
X0

2ϕ(s)
σ2W (s)

λ(es −K)ds (3.14)

and the critical value X satisfies

(eX −K)ψ′(X)− eXψ(X)
W (X)

=
∫ X
X0

2ψ(s)
σ2W (s)

λ(es −K)ds (3.15)

3.2 Probability of exercising options to trade
In order to be able to compute the expected number of trades in a given interval, we need to
compute the probability that a trader will submit an order during his lifetime. In this regard,
consider a stochastic process Xt with X0 = x and a constant c. If x ≥ c we define the first
passage time Tc(x) as the random variable

Tc(x) = inf{t ≥ 0 | Xt ≤ c}. (3.16)

Similarly if x > c. Introduce the distribution function of Xt starting at X(0) = x,

P (x | y, t) = Pr{Xt ≤ y | X(0) = x} (3.17)

and the distribution function of Tc, Fc(x | t) = Pr{Tc(x) ≤ t}. We assume P and F have
densities p and f :

p(x | y, t) = ∂

∂y
P (x | y, t) (3.18)

fc(x | t) = ∂

∂t
Fc(x | t). (3.19)
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Introduce also the minimum and maximum values of X up-to-date,

m(x, t) := inf
0≤s≤t
{X(s) | X(0) = x} (3.20)

M(x, t) := sup
0≤s≤t
{X(s) | X(0) = x} (3.21)

and the following probabilities:

FX(x | t) = Pr{m(x, t) ≤ X} = Pr{TX ≤ t}, x ≥ X (3.22)
FX(t | x) = Pr{M(x, t) ≥ X} = Pr{TX ≤ t}, x ≤ X (3.23)

Also denote

ϕ(x) = ez
2/4D−ν(z) (3.24)

ψ(x) = ez
2/4D−ν(−z) (3.25)

with
z =
√

2κ(x− θ)
σ

and
ν = λ

κ
.

Denote by f̂ the Laplace transform of f . We have the following extension of a classical result.
Proposition 3.3. ( Darling and Siegert (1953)). The probabilities that m(x, t) (M(x, t))
is less than X (X) during the exponentially distributed period with mean length 1/λ are given
by, respectively,

Pmin(x | X,λ) = f̂X(x | λ) = ϕ(x)
ϕ(X)

, x ≥ X (3.26)

Pmax(x | X,λ) = f̂X(x | λ) = ψ(x)
ψ(X)

, x ≤ X (3.27)

3.3 Probability of exercising options to trade with random starting
time

The above result is still not sufficient for computing the probability that a trader will submit
an order during his lifetime that is assumed to be random. We now extend the result to
random lifetimes.

Recall that p(x | y, t) denotes the transition density of X. We have
Proposition 3.4. The probability that the minimum of X(t) is less than X during a buyer’s
lifetime is given by, in the notation of the previous sections, and given that X0 = x,

Pmin(x | X,λB, ρB)
=
∫∞
X λBPmin(y | X, ρB)p̂(x | y, λB) dy +

∫X
−∞ λB p̂(x | y, λB) dy, (3.28)
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where
Pmin(y | X, ρB) = ϕ(y, ρB)

ϕ(X, ρB)
, (3.29)

with
ϕ(x, λ) = ez

2/4D−λ/κ(z), z ≡
√

2κ(x− θ)
σ

(3.30)

Similarly, the probability that the maximum of X(t) is higher than X during a seller’s lifetime
is given by

Pmax(x | X,λS, ρS)
=
∫X
−∞ λSPmax(y | X,λ)p̂(x | y, λS) dy +

∫∞
X λS p̂(x | y, λS) dy, (3.31)

where
Pmax(y | X,λ) = ψ(y, λ)

ψ(X,λ)
(3.32)

with
ψ(x, λ) = ez

2/4D−λ/κ(−z), z ≡
√

2κ(x− θ)
σ

(3.33)

Moreover, the Laplace transform in these expressions is given by

p̂(x | y, λ)

= 0.398942Γ(ν)
√

2
κσ2 e

z2
x−z

2
y

4 [Θ(x− y)D−ν(zx)D−ν(−zy) + Θ(y − x)D−ν(−zx)D−ν(zy)]

where Θ(x) is Heaviside theta function.

We now have all the equations needed to compute the expected number of buys and sells
during a given interval of time. We use those equations on experimental data in the following
section.

4 Long Term Competitive Equilibrium and calibration
to experimental data

In this section we first define the Long Term Competitive Equilibrium (LTCE) and then we
calibrate our model to experimental data of Alton and Plott (2010).

Definition 4.1. Given a fixed interval of time, the LTCE price is the value for which the
expected number of buys is equal to the expected number of sells during that interval, if the
traders submit their orders optimally according to the model of the previous sections.

The LTCE price can be interpreted as an analogue of the Flow Competitive Equilibrium
(FCE) price that Alton and Plott (2010) introduced as the value at which expected number of
buys is equal to the expected number of sells in the market in which the traders do not behave
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strategically, but immediately submit their private values as buy and sell orders. Alton and
Plott (2020) also define Temporal Equilibrium (TE) price, which is the price at which the
market clears at the present time. The data from their experiments tends to move from one of
these equilibria to the other. Our LTCE price is a more sophisticated notion of equilibrium,
that takes into account the traders’ optimization and the mean reverting nature of the price.

We now calibrate our model to the experimental data from an experiment in Alton and
PLott (2010). In that paper the authors report on experiments in which participants (college
students) receive random private values at random times, that last for a certain lifetime, after
which the values are no longer available. During those lifetime intervals, if a buyer buys a
unit of the asset she can sell it later to the experimenter at the guaranteed private value.
Analogously for the seller. The participants trade in a standard limit order market, that is,
using a continuous double auction mechanism. That part is not modeled in our optimization
framework, that can be thought of as a stylized way to depict the actual experimental market.

Even though it is unlikely that individually the participants estimate the price process as
a mean-reverting process and then try to find the optimal exercise time as in our model, our
hope is that on average the result of their trading would not be far away from the aggregate
theoretical predictions. 2

The aim of our exercise is to compute the LTCE price, denoted θ̃. The following are the
steps we do for this computation.

- We set ri = 0, since our time interval is short, two hours.
- We observe transacted prices. We use these observations to estimate the parameters κ,

σ and θ of the Ornstein-Uhlenbeck process, to get estimates κ̂, σ̂ and θ̂, using the maximum
likelihood procedure. 3

- We pick an initial value θ̃0 for the LTCE.
- We discretize the range of the private values (whose distribution is uniform in those

experiments), and use the discrete values as the strike prices.
- For each private value as the strike price, we compute critical exercise values X and X̄.
- Assuming the initial asset price is equal to the initially chosen θ̃0, we compute the

probabilities of buys and sells for different private values, using the formulas from the previous
section.

- We estimate the expected number of buys by the number of buyers multiplied by the
average of buy probabilities. If the expected number of buys is not sufficiently close to that
of sells, we change the value of θ̃0 in the appropriate direction and repeat the procedure, until
those numbers become close to each other. The final value θ̃ so obtained is our Long-Term
Competitive Equilibrium price.

The results of this procedure are illustrated in Figure 1. The figure shows the data gen-
erated by an experiment from Alton and Plott (2010) in which the distribution of the orders

2The phenomenon that individually participants in experiments do not behave optimally, but in aggregate
the price formation is not far away to what it would be if they did, has been found before in experimental
asset pricing, see, e.g., Bossaerts, Plott and Zame (2007).

3In doing this, we discard initial data points which are far away from “equilibrium price", as this is a period
in which the participants are basically learning. Moreover, we smooth out the price values grouped in narrow
time intervals, because our diffusion process would not be a good fit for the big jumps in price that often occur
during those intervals.
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changed in the middle, which made the typical price values move up in the second part of
the experiment. Also shown are the FCE and the LTCE for the two parts of the experiment.
We see that those values, which make the expected number of buys and sells equal in the
corresponding models, are not very different for this data set. That is, assuming no strategi-
cal behavior on the part of the participants (resulting in the FCE value) results in a similar
competitive equilibrium value as assuming that they optimally time the exercise of the option
to trade using the OU-model (resulting in the LTCE value).

When computing the LTCE computed in Figure 1 we have used all the data points from
the experiment (except for thirty initial trades for each part). We have then computed the
LTCE using only the first quarter of the data points, as well as using a half and three quarters
of the data points. Remarkably, the LTCE value does not change much with the length of
the sample, even though the statistical estimates of the parameters of the OU process change
more significantly. For example, for the first part of the experiment (excluding the first thirty
data points from the sample) the computed value of the LTCE is equal to 293 using all the
data points, and equal to 290.7 using only the first quarter of the sample. However, the
estimated value of θ is θ̂ = 292.09 using all the data points, and equal to θ̂ = 284.41 using the
first quarter only. Other estimated parameters for the first part are, using all the data points,
κ̂ = 0.0880, σ̂ = 0.0319, and for the second part κ̂ = 0.0338 σ̂ = 0.0169. Using only a quarter
of the data points, for the first part we have κ̂ = 2.1838, σ̂ = 0.1635 and for the second part
κ̂ = 0.0287, σ̂ = 0.0226.

To reiterate, even though statistical estimation of the OU process parameters is somewhat
unstable, the resulting LTCE value, that depends on that estimation, is quite robust.

5 Conclusions
We propose a model for trading an asset in a market with private reservation values, in which
the traders decide optimally on the trade execution time. Assuming the market price follows a
mean-reverting diffusion process, we find the equation for the optimal buy and sell levels, and
expressions for the corresponding execution probabilities during a random interval of time.
We then define Long-Term Competitive Equilibrium, LTCE, to be the value of the long-term
stationary mean that makes the expected number of buys equal to the expected number of
sells. The model is then fitted to the experimental data of Alton and Plott (2010). The data
calibration results in a very good fit of the model, with the prices in the experiment fluctuating
around LTCE. Moreover, and somewhat surprisingly, LTCE value is not very sensitive to the
fraction of the sample we use to compute it, unlike the statistically estimated long-term mean.

While it would be desirable also to test the model on real market data, we cannot do such
a calibration, because of the dependence on unknown private values. Let us mention that Lo,
MacKinlay, and Zhang (2002), while performing a statistical analysis of the timing of limit
orders, show that modeling trade execution times as passage times of a GBM process at a
fixed level does not fit the market data well. In contrast, our price process is not a GBM
process, but a mean-reverting process, and the trades are executed at varying passage times
that are optimally decided by individual traders depending on their private values. Thus, it is
a significantly richer model, and might not be necessarily rejected by the actual market data.
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Figure 1: Transaction prices from an Alton-Plott (2010) experiment. Duration of
the experiment is 2 hours, with first part lasting 71 minutes, and the second 49 minutes.
Buyer and seller arrival rates are 4/min. Lifetime of private values is 6 minutes, and their
distribution is U(52, 451) for the first part and U(273, 672) for the second part. The LTCE
value for the first part is 293, while for the second part it is 516.
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In future research, it would be of interest to do “reverse engineering" – taking the observed
orders as given, and finding the implied distribution of private values. This would give a
measure of the overall market sentiment during a chosen period of time, and this measure
could be tested to see how well it depicts the actual mood changes over a sequence of time
periods.

6 Appendix
Proof of Proposition 3.1: As in Carr (1998), P (X) satisfies ordinary differential equation
(ODE)

σ2

2
P ′′(X) + κ(θ −X)P ′(X)− rP (X) = λ

[
P (X)−

(
K − eX

)+
]
, X > X (6.34)

subject to the boundary conditions

lim
X→∞

P (X) = 0, lim
X→X

P (X) = K − eX , lim
X→X

P ′(X) = −eX (6.35)

In the region X > logK ≡ X0, the ODE is reduced to homogenous ODE

σ2

2
P ′′(X) + κ(θ −X)P ′(X)− (r + λ)P (X) = 0, X > X0 (6.36)

Introducing the change of variables

z =
√

2κ
σ

(X − θ)

and letting P (X) = ez
2/4ω(z), equation (6.36) becomes

ω′′(z) +
(

1
2
− ν − z2

4

)
ω(z) = 0 (6.37)

with
ν = (r + λ)/κ.

The general solution of (6.37) can be represented in the form

ω(z) = CD−ν(z) + ED−ν(−z). (6.38)

From limX→∞ P (X) = 0 we get E = 0. Therefore,

P (X) = Cez
2/4D−ν(z), X > X0 ≡ logK (6.39)

In the region X < X < X0, the solution can be written as the general solution plus a
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particular solution,
P (X) = Aϕ(X) +Bψ(X) +Q(X), (6.40)

where Q(X) is a particular solution that can be taken as in (3.8) (see, e.g., Johnson (2006)).
From the boundary conditions Eq. (6.35) at X = X and using the continuity of P (X) and
P ′(X) at X = X0, it is not difficult to obtain B = 0, and A, C and X as in the statement of
the proposition.

Proof of Proposition 3.3: Because the maturity date is exponential and independent
of process X, we have

Pmin(x | X,λ) = λ
∫ ∞

0
e−λtFX(x | t) dt (6.41)

= −
[
FX(x | t)e−λt|∞0 −

∫ ∞
0

e−λtfX(x | t) dt
]

(6.42)

=
∫ ∞

0
e−λtfX(x | t) dt (6.43)

= f̂X(x | λ) (6.44)

Similarly,
Pmax(x | X,λ) = f̂X(x | λ). (6.45)

For our Ornstein-Uhlenbeck process X, function p(x | y, t) satisfies the PDE

∂p

∂t
= κ(θ − x)∂p

∂x
+ σ2

2
∂2p

∂x2 (6.46)

with initial and boundary conditions p(∞ | y, t) = p(−∞ | y, t) = 0, p(x | y, 0) = δ(x − y).
Taking the Laplace transform of equation (6.46), we get

λp̂ = κ(θ − x)dp̂
dx

+ σ2

2
d2p̂

dx2 (6.47)

Therefore, we have

p̂(x | y, λ) =
{
ψ(x)ϕ(y), y ≥ x
ϕ(x)ψ(y), y ≤ x (6.48)

up to a constant factor. The result follows now from Theorem 3.1 in Darling and Siegert
(1953).

Proof of Proposition 3.4: Note that we can write our Ornstein-Uhlenbeck process X
in the form

X(t) = xe−κt + θ(1− e−κt) + σ
∫ t

0
e−κ(t−u) dW (u) (6.49)

and that there is a Brownian motion B(t) such that∫ t
0
eκudW (u) = 1√

2κ
B(e2κt − 1). (6.50)
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Therefore, we have

X(t) = xe−κt + θ(1− e−κt) + σ√
2κ
e−κtB(e2κt − 1), X(0) = x (6.51)

It is then not difficult to show that the transition density is given by

p(x | y, t) =
√

κ

πσ2
1

(1− e−2κt) exp
{
− κ

σ2
[y − xe−κt − θ(1− e−κt)]2

1− e−2κt

}
(6.52)

Buyer i lives during random interval [τBi , τBi + ∆τBi ] with

Pr{τBi ∈ dt} = λBe
−λBtdt, Pr{∆τBi ∈ dt} = ρBe

−ρtdt (6.53)

Then, the probability that the minimum of X(t) is less than X during a buyer’s lifetime is

Pmin(x | X,λB, ρB)
=
∫∞

0 λBe
−λBτ dτ

[∫∞
X Pmin(y | X, ρB)p(x | y, τ) dy +

∫X
−∞ p(x | y, τ) dy

]
=
∫∞
X λBPmin(y | X, ρB)p̂(x | y, λB) dy +

∫X
−∞ λB p̂(x | y, λB) dy, (6.54)

where we use the fact that if X(τBi ) ≤ X, the buyer will make a transaction immediately after
she enters the market, and if X(τBi ) ≥ X, there is probability Pmin(y | X, ρB) that X(t) will
hit X during the random period. The expression for Pmin(y | X, ρB) follows from the previous
section. The corresponding expression for the seller follows using the same method.

Next, we calculate the Laplace Transform of p(x | y, t),

p̂(x | y, λ) =
∫ ∞

0
e−λtp(x | y, t) dt (6.55)

We know that p(x | y, t) satisfies Kolmogorov equation

∂f

∂t
= κ(θ − x)∂f

∂x
+ σ2

2
∂2f

∂x2 (6.56)

subject to f(∞ | y, t) = f(−∞ | y, t) = 0 and f(x | y, 0) = δ(x−y). Taking Laplace transform
on both sides of equation (6.56), we get

λp̂− δ(x− y) = κ(θ − x)dp̂
dx

+ 2
σ2
d2p̂

dx2 (6.57)

Letting z ≡
√

2κ(x− θ)
σ

and zy ≡
√

2κ(y − θ)
σ

, equation (6.57) becomes

d2p̂

dz2 − z
dp̂

dz
− λ

k
p̂ = −

√
2
κσ2 δ(z − zy) (6.58)
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Imposing the boundary conditions, we get

p̂ =
{
Aez

2/4D−ν(z), z ≥ zy
Bez

2/4D−ν(−z), z ≤ zy
(6.59)

From equation (6.58), we know that dp̂

dz
cannot be continuous. Integrating both sides of

equation (6.58) from z−y to z+
y , and because p̂ is continuous, it is straightforward to get

dp̂

dz
(z+
y )− dp̂

dz
(z−y ) = −

√
2
κσ2 (6.60)

With equation (6.60) and p̂ continuous, we get

p̂(x | y, λ) =


√

2
κσ2 e

−z2y/4 D−ν(−zy)
D1−ν(zy)D−ν(−zy)+D1−ν(−zy)D−ν(zy)e

z2/4D−ν(z), z ≥ zy√
2
κσ2 e

−z2y/4 D−ν(zy)
D1−ν(zy)D−ν(−zy)+D1−ν(−zy)D−ν(zy)e

z2/4D−ν(−z), z ≤ zy
(6.61)

with ν = λ/κ. We can further simplify the answer by calculating T (ν, z) ≡ D1−ν(z)D−ν(−z)+
D1−ν(−z)D−ν(z). First, we prove T (ν, z) is independent of z:

dT (ν, z)
dz

= D′1−ν(z)D−ν(−z)−D1−ν(z)D′−ν(−z)−D′1−ν(−z)D−ν(z) +D1−ν(−z)D′−ν(z)

= D1−ν(z) [−zD−ν(−z) + νD−ν−1(−z)]−D1−ν(−z) [zD−ν(z) + νD−ν−1(z)]
= D1−ν(z)D1−ν(−z)−D1−ν(−z)D1−ν(z)
= 0 (6.62)

Here, we use the recursion relation for parabolic cylinder functions,

Dν+1(z)− zDν(z) + νDν−1(z) = 0 (6.63)

D′ν(z) + 1
2
zDν(z)− νDν−1(z) = 0 (6.64)

From these, it is also not difficult to get

T (ν) = νT (ν + 1) (6.65)

(Note we dropped dependence on z here.) Then, we have

T (ν) = T (1)
Γ(ν)

, ν > 0, (6.66)

where T (1) = 2.50663. Plugging this result into Eq. (6.61), we get the stated expression for
p̂.

15



References
[1] Alton, M. and Plott, C. (2010), “Principles of continuous price determination in an ex-

perimental environment with flows of random arrivals and departures". Working paper,
Caltech.

[2] Avellaneda, M. and Stoikov,S. (2008), “High-frequency trading in a limit order book".
Quantitative Finance, 8, 217-224.

[3] Back, K. and Baruch, S. (2007), “Working Orders in Limit-Order Markets and Floor
Exchanges". forthcoming in the Journal of Finance.

[4] Biais, B., Foucault, T. and Moinas, S. (2010),“Equilibrium algorithmic trading". Working
paper, Toulouse School of Economics (IDEI).

[5] Biais, B., Martimort, D. and Rochet, J.-C. (2000), “Competing mechanisms in a common
value environment". Econometrica, 68, 799Ű837.

[6] Biais, B. and Weill, P.-O. (2009), “Liquidity shocks and order book dynamics". Working
paper.

[7] Bossaerts, P., Plott, C. and Zame, W. (2007), “Prices and Portfolio Choices in Financial
Markets: Theory, Econometrics, Experiments", 75, 993-Ű1038.

[8] Carr, P. (1998), “Randomization and the American Put". The Review of Financial Studies,
597–626.

[9] Cont, R., Stoikov, S. and Talreja, R. (2009), “A stochastic model for order book dynamics".
Working paper.

[10] Darling, D.A., and Siegert, A.J.F. (1953), ‘The First Passage Problem for a Continuous
Markov Process". Ann. Math. Statist., 24, 624–639.

[11] Foucault, T. (1999), “Order flow composition and trading costs in a dynamic limit order
market”. Journal of Financial Markets, 2, 99Ű134.

[12] Foucault, T., Kadan, O. and Kandel, E. (2005), “Limit order book as a market for
liquidity". Review of Financial Studies, 18, 1171-1217.

[13] Goettler, R., Parlour, C., and U. Rajan (2005), “Equilibrium in a dynamic limit order
market”, Journal of Finance, 60, 2149Ű-2192.

[14] Guo, X. and Zhang, Q. (2005), “Optimal Selling Rules in a Regime Switching Model".
IEEE Transactions on Automatic Control, 50, 1450-1455.

[15] Johnson, T.C. (2006) “The optimal timing of investment decisions". Ph.D thesis, King’s
College, London.

16



[16] Kuhn, C. and Stroh, M. (2009), “Optimal portfolios of a small investor in a limit order
market Ű a shadow price approach". Working paper.

[17] Lo, A.W., MacKinlay, A.C., and Zhang, J. (2002), “Econometric models of limit-order
executions". Journal of Financial Economics 65, 31-Ű71.

[18] Rosu, I. (2009), “A dynamic model of the limit order book". Forthcoming in The Review
of Financial Studies".

[19] Pagnotta, E. (2010), “Information and Liquidity Trading at Optimal Frequencies". Work-
ing paper.

[20] Parlour, C. (1998), “ Price dynamics in limit order markets". Review of Financial Studies,
11, 789Ű-816.

[21] Parlour, A.S. and Seppi, D.J. (2003), “Liquidity-based competition for order flow”. Review
of Financial Studies, 16, 301-343.

[22] Peskir,G. and du Toit, J. (2009), “Selling a stock at the ultimate maximum". Ann. Appl.
Probab, 19, 983-1014.

[23] Shiryaev, A.N., Xu, Z. and Zhou X.Y. (2008), “Thou shalt buy and hold". Quantitative
Finance, 8, 1-12.

[24] Shreve, S. (2004), Stochastic Calculus for Finance II: Continuous-Time Models. Springer-
Finance.

[25] Zhang, Q. (2001), “Stock Trading: An Optimal Selling Rule". SIAM J. Control Optim.,
40, 64-87.

17


