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Abstract

This is a survey paper on portfolio optimization problems in con-
tinuous time market models. The tools of convex duality and martin-
gales are used to solve these problems in the complete market case, as
well as the markets which are incomplete, due to portfolio constraints
or other market frictions such as different interest rates for borrowing
and lending, or presence of transaction costs. Also presented is the
problem of finding the minimal cost of superreplicating a given claim

in such markets.
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1 Introduction

The main topic of this survey is the problem of utility maximization from
terminal wealth for a single agent in various financial markets. Namely, given
agent’s utility function U(-) and initial capital 2 > 0, he is trying to max-
imize expected utility E[U(X™7(T))] from his “terminal wealth”, over all
“admissible” portfolio strategies m(-). The same mathematical techniques
that we employ here can be used to get similar results for maximizing ex-
pected utility from consumption; we refer the interested reader to the rich
literature on that problem, some of which is cited below.

The seminal papers on these problems in the continuous-time complete
market model are Merton (1969, 1971). Using Ito calculus and stochastic
control /partial differential equations approach, Merton finds a solution to
the problem in the Markovian model driven by Brownian motion process,
for logarithmic and power utility functions. A comprehensive survey of his
work is Merton (1990). For non-Markovian models one cannot deal with the
problem using partial differential equations. Instead, a martingale approach
using convex duality has been developed, with remarkable success in solv-
ing portfolio optimization problems in diverse frameworks. The approach is
particularly well suited for incomplete markets (in which not all contingent
claims can be perfectly replicated). Tt consists of solving an appropriate dual
problem over a set of “state-price densities” corresponding to “shadow mar-
kets” associated with the incompleteness of the original market. Given the
optimal solution 7 to the dual problem, it is usually possible to show that

the optimal terminal wealth for the primal problem is represented as the in-



verse of “marginal utility” (the derivative of the utility function) evaluated
at 7. Early work in this spirit includes Foldes (1978a,b) and Bismut (1975),
based on his stochastic duality theory Bismut (1973). The first paper using
(implicitly) the technique in its modern form, in the complete market, is
Pliska (1986), followed by Karatzas, Lehoczky and Shreve (1987) and Cox
and Huang (1989, 1991). The explicit use of the duality method, and in
incomplete and/or constrained market models, was applied by Xu (1990),
He and Pearson (1991), Xu and Shreve (1992), Karatzas, L.ehoczky, Shreve
and Xu (1991), Cvitani¢ and Karatzas (1992, 1993), El Karoui and Quenez
(1995), Jouini and Kallal (1995a), Karatzas and Kou (1996), Broadie, Cvi-
tani¢ and Soner (1998). An excellent exposition of these methods can be
found in Karatzas and Shreve (1998), and that of discrete-time models in
Pliska (1997); see also Korn (1997). A definite treatment in a very gen-
eral semimartingale framework is provided in Kramkov and Schachermayer
(1998).

A similar approach works in models in which the drift of the wealth
process of the agent is concave in his portfolio strategy 7 (-). This includes
models with different borrowing and lending rates as well as some “large
investor” models. Analytical approach is used in Fleming and Zariphopulou
(1991), Bergman (1995), while the tools of duality are essential in El Karoui,
Peng and Quenez (1997), Cvitani¢ (1997), Cuoco and Cvitanic¢ (1998).

Portfolio optimization problems under transaction costs, usually on in-
finite horizon T = oo, have been studied mostly in Markovian models, us-
ing PDE/variational inequalities methods. The literature includes Magill
and Constantinides (1976), Constantinides (1979), Taksar, Klass and Assaf
(1988), Davis & Norman (1990), Zariphopoulou (1992), Shreve and Soner
(1994), Morton and Pliska (1995). We follow the martingale/duality ap-
proach of Cvitani¢ and Karatzas (1996) and Cvitani¢ and Wang (1999), on
the finite horizon T' < co. While this method is powerful enough to guaran-
tee existence and a characterization of the optimal solution, algorithms for

actually finding the optimal strategy are still lacking.



In order to apply the martingale approach to portfolio optimization, we
first have to resolve the problem of (super)replication of contingent claims
in a given market. After presenting the continuous-time complete market
model and recalling the classical Black-Scholes-Merton pricing in Sections 2
and 3, we find the minimal cost of superreplicating a given claim B under
convex constraints on the proportions of wealth the agent invests in stocks,
in Sections 4 and 5 (for much more general results of this kind see Follmer
and Kramkov 1997). In the complete market this cost of superreplication
of B is equal to the Black-Scholes price of B, namely equal to the expected
value of B (discounted), under a change of probability measure that makes
the discounted prices of stocks martingales.

In the case of a constrained market, in which the agent’s hedging port-
folio has to take values in a given closed convex set K, it is shown that the
minimal cost of superreplication is now a supremum of Black-Scholes prices,
taken over a family of auxiliary markets, parametrized by processes v(-),
taking values in the domain of the support function of the set —K. These
markets are chosen so that the wealth process becomes a supermartingale,
under the appropriate change of measure. In the constant market param-
eters framework, the minimal cost for superreplicating B under constraints
can be calculated as the Black-Scholes (unconstrained) price of an appro-
priately modified contingent claim B > B, and the hedging portfolio for B
automatically satisfies the constraints.

In Section 6 we show how the same methodology can be used to get
analogous results in a market in which the drift of the wealth process is a
concave function of the portfolio process.

Section 7 introduces the concept of utility functions, and Section 8 proves
existence of an optimal constrained portfolio strategy for maximizing ex-
pected utility from terminal wealth. This is done indirectly, by first solving a
dual problem, which is, loosely speaking, a problem to find an optimal change
of probability measure associated to the constrained market. The optimal

portfolio policy is the one that replicates the inverse of marginal utility, eval-
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uated at the Radon-Nikodym derivative corresponding to the optimal change
of measure in the dual problem. Explicit solutions are provided in Section
9, for the case of logarithmic and power utilities. Next, in Section 10 we ar-
gue that it makes sense to price contingent claims in the constrained market
by calculating the Black-Scholes price in the unconstrained auxiliary market
that corresponds to the optimal dual change of measure. Although in general
this price depends on the utility of the agent and his initial capital, in many
cases it does not. In particular, if the contraints are given by a cone, and the
market parameters are constant, the optimal dual process is independent of
utility and initial capital. This approach to pricing in incomplete markets
was suggested in Davis (1997) and further developed in Karatzas and Kou
(1996).

In Sections 11-14 we study the superreplication and utility maximization
problems in the presence of proportional transaction costs. Similarly as in the
case of constraints, we identify the family of (pairs of) changes of probability
measure, under which the “wealth process” is a supermartingale, and the
supremum over which gives the minimal superreplication cost of a claim in
this market. Representations of this type were obtained in various models in
Jouini and Kallal (1995b), Kusuoka (1995), Kabanov (1999). (It is known
that in standard diffusion models this cost is simply the cost of the least
expensive static (buy-and-hold) strategy which superreplicates the claim.
For the case of the Furopean call it is then equal to the price of one share
of the underlying, the result which was conjectured by Davis and Clarke
(1994) and proved by Soner, Shreve and Cvitani¢ (1995). The same result
was shown to hold for more general models and claims in Leventhal and
Skorohod (1997) and Cvitani¢, Pham and Touzi (1998).) Next, we consider
the utility maximization problem under transaction costs, and its dual. The
nature of the optimal terminal wealth in the primal problem is shown to
be the same as in the case of constraints - it is equal to the inverse of the
marginal utility evaluated at the optimal dual solution. This result is used

to get sufficient conditions for the optimal policy to be the one of no trade



at all - this is the case if the return rate of the stock is not very different
from the interest rate of the bank account and the transaction costs are large
relative to the time horizon.

The important topic which is not considered here is approximate hedg-
ing and pricing under transaction costs. Articles dealing with this prob-
lem in continuous-time include Leland (1985) Avellaneda and Pards (1993),
Davis, Panas and Zariphopoulou (1993), Davis and Panas (1994), Davis
and Zariphopoulou (1995), Barles and Soner (1998), Constantinides and 7a-
riphopoulou (1999). Other related works on the the subject of transaction
costs, that the reader may find useful to consult are: Bensaid, Lesne, Pages
& Scheinkman (1992), Boyle & Vorst (1992), Edirisinghe, Naik & Uppal
(1993), Flesaker & Hughston (1994), Gilster & Lee (1984), Grannan and
Swindle (1996), Hodges & Neuberger (1989), Hoggard, Whalley & Wilmott
(1993), Merton (1989), Morton & Pliska (1993).

2 The Complete Market Model

We introduce here the standard, Tto processes model for a financial market
M. Tt consists of one bank account and d stocks. Price processes So(-) and

S1(+), ..., Sa(+) of these instruments are modeled by the equations
dSo(t) = So(t)r(t)dt, So(0) =1

(]S;(f) = SE(YL) {Z)?(YL)(]YL + ZJ:O'”(YL)(]W7(YL>} R S7(0> =5, >0 R (2])

for 2 = 1,...,d, on some given time horizon [0,7T], 0 < T < oo. Here
W) = (W'(),...,W))" is a standard d—dimensional Brownian motion
on a complete probability space (Q,F, P), endowed with a filtration F =
{Fi}o<i<r, the P-augmentation of FV#)=a(W(s); 0<s<t), 0<t<
T, the filtration generated by the Brownian motion W(-). The coefficients
r(-) (interest rate), b(-) = (bi(+),...,ba(-))" (vector of stock return rates) and



a(-) = {oi;(-) hi<ij<a (matrix of stock-volatilities) of the model M, are all
assumed to be progressively measurable with respect to F. Furthermore,
the matrix o(-) is assumed to be invertible, and all processes r(-), b(-), o(+),
o~ '(+) are assumed to be bounded, uniformly in (#,w) € [0,7T] x Q.

The “risk premium” process
Oo(t) ;== ' (O)b(t) —r(H)1], 0<t<T (2.2)

where 1 = (1,...,1) € R? is then bounded and F—progressively measurable.

Therefore, the process

Zﬁy—mp[éw%wmwﬂ%Am%QWMLO<t<T (2.3)

is a P—martingale, and
Po(N) := E[7Zo(T)14A], A€ Fr (2.4)

is a probability measure equivalent to P on Fr. Under this risk-neutral

Si(7) Sa(*)

equivalent martingale measure Py, the discounted stock prices 50 0

become martingales, and the process

t
Wﬁ):LWﬂ+/%@ﬁ,0gt§T7 (2.5)

Jo

becomes Brownian motion, by the Girsanov theorem.

We also introduce the discount process

ot) i= e Jo i g <y < (2.6)
and “state price density” process
Ho(t) :==v0(t) Z0(t), 0<t<T. (2.7)

Consider now a financial agent whose actions cannot affect market prices,
and who can decide, at any time ¢t € [0,7T], what proportion m;(#) of his
(nonnegative) wealth X (#) to invest in the i stock (1 <i < d). Of course



these decisions can only be based on the current information F;, without an-
ticipation of the future. With m(¢) = (m(1),...,m4(t)) chosen, the amount
X(H[1 — L, m(1)] is invested in the bank. Thus, in light of the dynam-
ics (2.1), the wealth process X(-) = X7™°(+) satisfies the linear stochastic

differential equation

d

AX(t) = —de(t)+ [ X@)(1 D ml df—l—zm df—l—z(r” HydW (i

=1

= de(t) +r(t )X(t)dt+7r(,)o—(,)X(,)dWO(,); X(0) =z .

where the real number 2 > 0 represents initial capital and ¢(-) > 0 denotes
the agent’s cumulative consumption process.

We formalize the above discussion as follows.

Definition 2.1 (i) A portfolio process m : [0, T] x ) — ®?is F—progressively
measurable and satisfies [ || X (#)7(#)]|2dt < oo, almost surely (here, X is the
corresponding wealth process defined below). A consumption process c(-) is
a nonnegative, nondecreasing, progressively measurable process with RCLIL,
paths, with ¢(0) = 0 and ¢(T) < oc.

(i1) For a given portfolio and consumption processes 7(-), ¢(-), the pro-
cess X(-) = X7™°(+) defined by (2.9) below, is called the wealth process
corresponding to strategy (7, ¢) and initial capital .

(iii) A portfolio-consumption process pair (7(-),¢(+)) is called admissible

for the initial capital 2, and we write (7, ¢) € Ag(x), if

X0 (t) >0, 0<t<T (2.8)
holds almost surely.
For the discounted version of process X (-), we get the equation

d(yw()X(1) = —0(t)de(t) + (1) (t)yo(t) X (H)dWo(t).  (2.9)

It follows that v(-) X' () is a nonnegative local Py—supermartingale, hence

also a Py—supermartingale, by Fatou’s lemma. Therefore, if 7y is defined



to be the first time it hits zero, we have X (t) = 0 for ¢ > 7, so that the
portfolio values 7(#) are irrelevant after that happens. Accordingly, we can

and do set w(t) =0 for ¢t > 75. The supermartingale property implies
Eolyo(TYX"™(T)) <z, V71 € Ap(a). (2.10)

Here, FK° denotes the expectation operator under the measure P.

We say that a strategy (7(-),¢(+)) results in arbitrage if with the initial
investment 2 = 0 we have X%™%(T) > 0 almost surely, but X%™(T") > 0 with
positive probability. Notice that inequality (2.10) implies that an admissible
strategy (7(-), c(+)) € Ap(0) cannot result in arbitrage.

3 Pricing in the complete market

Let us suppose now that the agent promises to pay a random amount B(w) >
0 at time ¢t = T and that he wants to invest # dollars in the market in such
a way that his profit “hedges away” all the risk, namely that X™™(T) > B,
almost surely. What is the smallest value of & > () for which such “hedging”
is possible? This smallest value will then be the “price” of the contingent
claim B at timet = 0.

We say that B is a contingent claim if it is a nonnegative, Fr-measurable
random variable such that 0 < E°[vo(T)B] < oo. The super-replication price
of this contingent claim is defined by

h(0) :=inf{x > 0; J(m,¢c) € Ag(z) st. X"(T)> B a.s.}. (3.1)

The following classical result identifies h(0) as the expectation, under the

risk-neutral probability measure, of the claim’s discounted value; see Harrison

& Kreps (1979), Harrison & Pliska (1981, 83).

Proposition 3.1 The infimum in (3.1) is attained, and we have

h(0) = E(T) B (3.2)



Furthermore, there exists a portfolio mg(+) such that Xg(-) = XMOmro() s
given by

Xp(t) = %](t) Olo(TYBIF] . 0<t<T. (3.3)

Proof: Suppose X*™¢(T) > B holds a.s. for some = € (0,00) and a suitable
(m,¢) € Ao(z). Then from (2.10) we have x > z := E°~o(T)B] and thus
h(0) > z.

On the other hand, from the martingale representation theorem, the pro-

CeSss

Yo(t)

can be represented as

¥slh) = =l [ 0 ()i()

for a suitable {F;}-progressively measurable proceqq Y(-) with values in ®?
and [T [|(8)]|2dt < oo, a.s. Then mp(t) := w() ()((r'(t))q;/)(t) is a well
defined portfolio process, and we have Xg(-) = X*779(), by comparison
with (2.9). Therefore, z > h(0). o
Notice that
X T) = B

almost surely. We express this by saying that contingent claim B is aftainable,
with initial capital ~(0) and portfolio 5. In this complete market model, we
call h(0) the Black-Scholes price of B and mg(-) the Black-Scholes hedging
portfolio.

Example 3.1 Constant r(-) =r > 0,0(-) = o nonsingular. Tn this case, the

solution S(#) = (Si(1),...,S4(t)) is given by S;(t) = fi(t —s,5(s), o (Wo(t)—
Wo(s))), 0 <s <t where f:[0,00) x RL x Y = B? is the function defined
by

1
filt s yir) == s exp(r — 5(17:7:)75 +uyl, i=1,....d

10



where a = oo’.

Consider now a contingent claim of the type B = ¢(S(T)), where ¢ :
TRi — [0, 00) is a given continuous function, that satisfies polynomial growth
conditions in both ||s|| and 1/[|s||. Then the value process of this claim is
given by

Xalt) = e T OB(S(T))|F) ] e

S
= 0 [T 0800 oo g
= V(T —1,5(1)),

tdz

where

et f e >0, s el
V(t,p) :—{ Jra oty 5,02 7)) Gy d= »° +}.

() ;1=10, ser]

In particular, the price h(0) of the claim B is given, in terms of the function
V, by

h(0) = Xg(0) =V (T,5(0)) .

Moreover, function V' is the unique solution to the Cauchy problem (hy

Feynman-Kac theorem)

1 LS rvo & av vV
5 Z Z aijmﬂji(f)mi(f)mj + ;T(T78—T7 — V) == W,

=1 53=1

with the initial condition V(0,2) = ¢(x). Applying Ito’s rule, we obtain

AV (T —1,8(t)) = rV(T — 1, 5( zdjzdj 2: T —t,5(1)dW (1),

Comparing this with (2.9), we get that the hedging portfolio is given by

m(OV(T —1,5(t)) = S,;(t)gv

(T 1,8(), i=1,....d.

T

It should be noted that none of the above depends on vector b(-) of return

rates.
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If, for example, we have d = 1 and in the case ¢(s) = (s — k)" of

a Furopean call option, with o = o1 > 0, exercise price k > 0, N(z) =
\/% (7 e Pdu and dy(t,s) == 01—\/; [log(%) +(r+ é)t}j we have the famous

Black € Scholes (1973) formula

[ sN(dy(t,5)) — ke ""'N(d_(t,s)) ; >0, s€(0,00)
V(t78>{ (s — k)t ; t=0, SE(0,00)}.

4 Portfolio Constraints

We fix throughout a nonempty, closed, convex set K in R? and denote

by
§(x) = sup{—7'x} (4.1)

TeK
the support function of the set — K. This is a closed, positively homogeneous,
proper convex function on ®B? (Rockafellar (1970), p.114). Tt is finite on its

effective domain

K:={rer’/§x)<oc} (4.2)

which is a convex cone (called the “barrier cone” of —K'). For the rest of the

paper we assume the following mild conditions.

Assumption 4.1 The closed convex set K C R? contains the origin; in
other words, the agent is allowed not to invest in stocks at all. In particular,
4(-) > 0 on K. Moreover, the set K is such that 4(+) is continuous on the

barrier cone K of (4.2).

The role of the closed, convex set K that we just introduced, is to model
reasonable constraints on portfolio choice. One may, for instance, consider
the following examples.

(i) Unconstrained case: K =R Then K = {0}, and § =0 on K.

(i1) Prohibition of short-selling: K = [0,00)?. Then K=K,and § =0

on K.
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(iii) Incomplete Market: K = {m ¢ R%m, =0, Vi =m+1,....d} for
some fixed m € {1,....d—1}. Then K = {z e ®% 2, =0, Vi=1,...,m}
and § =0 on K.

(iv) K is a closed, conver cone in R?. Then K={zer’: x/z>0,Vre
K} is the polar cone of —K, and 4 = 0 on K. This case obviously
generalizes (i) - (iii).

(v) Prohibition of borrowing: K = {m € R4S m; < 1}. Then K =
{rer?y 2y =...=2,<0},and §(z) = —z, on K.

(vi) Rectangular constraints: K = x%_I;, I; = [y, 3] for some fixed
numbers —oo < «; < ) < ; < oo, with the understanding that the interval
I; is open to the right (left) if b; = oo (respectively, if a; = —o0). Then
5(x) = YL, (Bix; — auF) and K = R if all the ajs, Bis are real. In
general, K = {z ¢ R 2, > 0, Vi e Sy and 2, <0, Vj e S} where
S,={i=1,....d/ i=0c}, S_:={i=1,...,d ] o, = —0} . o

We consider now only portfolios that take values in the given, convex,

closed set K C R? i.e., we replace the set of admissible policies Ag(z) with
A'(z) :={(m,¢c) € Ag(z); 7(t,w) € K for [ xP —a.e. (t,w)}.

Here, ¢ stands for Lebesgue measure on [0, 7).
Denote by D the set of all bounded progressively measurable process v(-)

taking values in K a.e. on Q x [0,7]. Tn analogy with (2.2)-(2.5), introduce
0,() == o ()[v(t) +b(t) —r()1], 0<t<T, (4.3)

70y = esp [ [[0(0w () 5 [NuPas] o< <7 aa)
P,(A):= E[Z,(T)1A], A€ Fr (4.5)

W,(1) = W(t)—l-./otﬂy(s)ds, 0<1<T, (4.6)

a P”Y—Brownian motion. Also denote
(1) 1= e Jo Tl +a( ) (4.7)

13



and

H, () := 4,(1) 7, (1). (4.8)

Proposition 4.1 The (nonnegative) process

V(1) = HLDX () 4 [ L) X () (8(00) + 2/ (5)(5))ds + defs)

is a P— supermartingale for every v € D and (m,c) € A'(x). In particular,

sup I/ [HU(T)X(T) + ./OT H,(s)X(s){d(vs) + 7'(s)v(s)Hds| <z . (4.9)

veD

Proof: Tto’s rule implies

M,(t) = x+ ./Ot H,(s)X(s)[7'(s)a(s) — 0, (s)] dW(s).

In particular, the process on the right-hand side is a nonnegative local mar-
tingale, hence a supermartingale. o

In general, there are several interpretations for the processes v € D:
they are stochastic “Lagrange multipliers” associated with the portfolio con-
straints; in economics jargon, they correspond to the shadow prices relevant
to the incompletness of the market introduced by constraints. The number
h,(0) := EY[v,(T)B] = E[H,(T)B] is the unconstrained hedging price for B
in an auxiliary market M,,; this market consists of a bank account with inter-
est rate 7 (1) == r(1) + 8(v(1)) and d stocks, with the same volatility matrix
{ij(t)}1<ij<a as before and return rates bgy)(t) =b;(t)+v(t)+o(v(t)), 1 <
1 < d, for any given v € D. We shall show that the price for superreplicating
B with a constrained portfolio in the market M, is given by the supre-
mum of the unconstrained hedging prices h,(0) in these auxiliary markets

M,, veD.

5 Superreplication under portfolio constraints

Consider the minimal cost of superreplication of the claim B in the market

with constraints:

14



(6.1) —

h(0) = { inf{z > 0;3(m,¢c) € A'(x), st. X>™(T)> B a.s.} } .

oo, if the above set is empty

Let us denote by & the set of all {F;}-stopping times 7 with values in
[0, 7], and by S, the subset of S consisting of stopping times 7 s.t. p <7 <
o, for any two p € §,0 € § such that p < g, a.s. For every 7 € § consider

also the F,-measurable random variable

V(7) := esssup K'[Byo(T)exp{— ./T d(v(s))ds}F-]. (5.1)

veD T

We will show that ~(0) = V(0). We first need

Proposition 5.1 [f V(0) = sup,cp F[7,(T)B] < oo, then the family of

random variables {V(7)},es satisfies the equation of Dynamic Programming

V(1) =ess sup K"[V(0) exp{./j S(v(w)dub|F]; ¥V 0SS, (5.2)

UGDT,Q

where D, g is the restriction of D to the stochastic interval [7,0].

Proposition 5.2 The process V.= {V (), F;;0 <t < T} can be considered
in its RCLL modification and, for every v € D,

Qu(t) := V(H)e Jo 50D T g <y <1
(5.3)
is a P”-supermartingale with RCLIL paths

Furthermore, V' is the smallest adapted, RCLL process that satisfies (5.3) as
well as

V(T)= By(T), a.s. (5.4)

Proof of Proposition 5.1: Let us start by observing that, for any § € S,

the random variable

L(0) = BV(T)e lo FDi g

15



F7,(0)7,(0, T)V(T)e Jo 20005 £
K] /y(e)zy(f T)|F)
= B[Z,(0,T)V(T)e Jo 2003 1)

depends only on the restriction of v to [0, T] (we have used the notation
7,(0,T) = Z’;((Z))) It is also easy to check that the family of random variables
{J.(0)},ep is directed upwards; indeed, for any 4 € D,v € D and with
A=A{{t,w); J.(t,w) > J,(1,w)} the process A := ul4 + v1 4. belongs to D
and we have a.s. Jy(0) = max{.J,(0),J,(0)}; then from Neveu (1975), p.121,

there exists a sequence {vg }ren € D such that {J,, (0)}ren is increasing and

(7) V(9) = lim 1.J,.(0), a.s.

k—00

Returning to the proof itself, let us observe that

V(r) = eassup,ep, , Bl BT ey (e J Oy
< esssup,ep . FY[e” J7 0 Ny (0)|F.], a.s.

To establish the opposite inequality, it certainly suffices to pick u € D and
show that

(41) V() > BE[V(0)e Jr 50D s £ ]

holds almost surely.

Let us denote by M. 4 the class of processes v € D which agree with u on
[r,0]. We have

V() > ess sup E”[ffff(S Dis [y 30 dgv( )NF-

vEM g
= ess sup K"[e -7 o) dgFU{P fy s "V(T)|Fot| F-].

UGMTQ

Thus, for every v € M, 4, we have
2]
Vir) > B[e 13060 g gy F )

16



B 7,(7) 70 (7, 0) B 70(0, T Fo Yo J2 506V 1)1 7]
E170(7) 207 0) FA 70 (0, T Fo } o]
— B[Z(r,0)e 506N g 9y ]
— B[Z(r,0)e [ W )1 F]
— = e SN ) F.

Now clearly we may take {vx }ren € M, 4 in (i), as .J,(0) depends only on the
restriction of v on [#,T]; and from the above,

V(r) > Jim 4 e S0 (9) 7]

k—00

= e SN i 4 g (0))F]
. k—00 )
_ EM[E;,L 5(#(5))dsv(9)|77]7 a.s.

by Monotone Convergence. o

It is an immediate consequence of this proposition that
T [
(777) V(T)effo §(v(u))du Z Ey[v('g)effo 5(y(71,))d71,|77]7 a.5.

holds for any given 7 € §,0 € S, 7 and v € D.

Proof of Proposition 5.2: Let us consider the positive, adapted process
{V(t,w), Fy; t €0, T] N Q} for w € Q. From (iii), the process

V() RO Fe e 0.7]0 Q) for w e 0

is a P”- supermartingale on [0, T]NQ, where Q is the set of rational numbers,
and thus has a.s. finite limits from the right and from the left (recall Propo-
sition 1.3.14 in Karatzas & Shreve (1991), as well as the right-continuity of
the filtration {F:}). Therefore,

lim.: V(s,w) 3 0<t< T}
SEQ

Viit.w) :_{ V(Tw) 3 =T

lim o V(s,w) 3 0<t<T
V(0) . 1=0



are well-defined and finite for every w € Q* P(2*) = 1, and the resulting
processes are adapted. Furthermore (loc.cit.), {V(t—l—)effoy St E. ) <
t <T}is a RCOLL, PY-supermartingale, for all v € D; in particular,

V(t+) > B V(T)e [ 30O 151 a0,

holds for every v € D, whence V(i+) > V(1) a.s. On the other hand, from
Fatou’s lemma we have for any v € D:
1/ §(v

V(t+) = FE[lim V(t+]—) )

n—r 00 n

] t+1/n
< dim V(4 ) e b < v, s,
n—0o n

(u))du |Ff]

and thus {V(1+4), F; 0 <t < T} A{V(t), Fy; 0 <t < T} are modifications
of one another.

The remaining claims are immediate. o

Theorem 5.1 For an arbitrary contingent claim B, we have h(0) = V(0).
Furthermore, if V(0) < oo, there exists a pair (7,¢) € A'(V(0)) such that
XVO&RATY = B, a.s.

Proof: Proposition 4.1 implies 22 > FEY[v,(T)B] for every v € D, hence
h(0) > V(0).

We now show the more difficult part: h(0) < V(0). Clearly, we may
assume V(0) < co. From (5.3), the martingale representation theorem and

the Doob-Meyer decomposition, we have for every v € D:
t
Q) = V() + [ GL(s)W,(s) — A(), 0<E<T,  (55)
Jo

where ¢, () is an R%*valued, {F;} progressively measurable and a.s. square-
integrable process and A,(-) is adapted with increasing, RCLI, paths and
A, (0) = 0, FA(T) < oo a.s. The idea then is to consider the positive,
adapted, RCLI, process

X(t):=—= = =, 0<t<T (YVveD) (5.6)



with )A((O) = V(0), )A((T) = B a.s., and to find a pair (7,¢) € A(V(0)) such
that )A(() = XV This will prove that A(0) < V(0).

In order to do this, let us observe that for any u € D,v € D we have
from (5.3)

Qult) = Qutyexp | [150:(5)) — 8(u(s)) s
and from (5.5):

4Qu(1) = expll{3(v(s)) — d(us))}s] - [QU{B((1)) — d(u(t)) s
T, (1) — dA(1)] (5.7)

— expL{B(v(s)) — Blpu(s) bds] - X (D (D{8((1)) — S(pu(1)) )t

A+ (A1) — p()dl+ ()W, (1]

Comparing this decomposition with

AQu(1) = (AW, (1) — A1) | (5.8)

we conclude that
77Z/ (71) efot §(v(s))ds _ 77Z/ (71) efot §(u(s))ds
v I

and hence that this expression is independent of v € D:

A~

Y1) e SO X (R (Ne(t); YO<I<T,veD  (5.9)

for some adapted, R%valued, a.s. square integrable process 7 (we do not
know yet that 7 takes values in K). If X(#) =0, then X(s) =0 for all s > ¢,
and we can set, for example, 7(s) = 0, s > ¢ (in fact, one can show that
17 I{Y(t):()}H;/)y(t)szt = 0, a.s; see Karatzas and Kou (1996)).

Similarly, we conclude from (5.7), (5.9) and (5.8):

~

o SN G AL (1) — Ao (D)X ()[S(v(1)) + 7' (1) (1)]dt

= o S0ENB G4 (1) (1) X (1) [8((1)) + 7 (1)a( 1))t
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and hence this expression is also independent of v € D:

()= [ (0As) — [ XS0+ ()7)lds . (510

for every 0 <t < T,v € D. Setting v = 0, we obtain &(1) = [/ v, ' (s)dAo(s),0 <
t < T and hence

¢(+) is an increasing, adapted, RCLI process (5.11)
with ¢(0) =0 and &(T) < o0, a.s. . -
Next, we claim that
S(v)+Vr(t,w) >0, LQP —a.e. (5.12)

holds for every v € K. Then Theorem 13.1 of Rockafellar (1970) (together
with continuity of §(-) and closedness of K') leads to the fact that

7(t,w) € K holds £ ®@P —a.e. on [0,7T] x Q.

In order to verify (5.12), notice that from (5.10) we obtain
t A
[0 () As)s = #0) + X (o) + o2 s 0 <4< T, v e D.
Jo

Fix v € K and define the set F, := {(t,w) € [0, T] xQ; §(v))+/7(t,w) < 0}.
Let (1) :== [v1pe + nvlg,], n € N; then p € D, and assuming that (5.12)

does not hold, we get for n large enough

E[/)T 7 () Au(s)ds] = B [e(T) + [ X (D)1 {8(v) + /7 (1) bt
+n kb UOT X (1)1 k{6(v) + Vlﬁ'(t)}dt} <0,

a contradiction.

Now we can put together (5.5)-(5.10) to deduce

~

A (X (1) = dQu(t) = (1AW, (1) — dA(1)
— (D[ déft) — XOS(0) + (D}t (5.13)
FX(OF (1AW, (1)] .
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for any given v € D. As a consequence, the process
VL) = 080+ [ 2u(0del) + [ () S Iw)) + V()N
— V() + ./Ot ()R ()3 (s)o ()W, (s) , 0<t<T

is a nonnegative, P”-local martingale, hence supermartingale. In particular,

for v =0, (5.13) gives:

d(%(t)f{(f)) = ()de(l) + () X (D (e ()dWo(t),
X(0) = v(0), X(T)=B,

which is equation (2.9) for the process X(:) of (5.6). This shows X(-) =
XVORE) "and hence h(0) < V(0) < co. o

Definition 5.1 We say that claim B is K—hedgeable if its minimal cost
of superreplication is finite, V(0) < oo; we say it is K —attainable if there
exists a portfolio process m with values in K such that (7,0) € A'(V(0)) and
XVOmO(TY = B, as.

Theorem 5.2 For a given K-hedgeable contingent claim B, and any given
X € D, the conditions

{Q\(1) = V(t)ef~lhr)t5(k(7"))d7",]—“t; 0<t<T} isaP*-martingale (5.15)

A achieves the supremum in V(0) = sup K'[B~,(T)] (5.16)
veD
B is K-attainable (by a portfolio w), and the (5.17)
corresponding 1 (-) XV OT0() is a P -martingale -
are equivalent, and imply
e(t,w) =0, S(A(t,w))+ Nt,w)r(t,w)=0; (@ P —a.e. (5.18)

for the pair (7,¢) € A(V(0)) of Theorem 5.1.
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Proof: The P'supermartingale Q.\(-) is a P*-martingale, if and only if
0r(0) = FPQu(T) & V(0) = FA[Bn(T)] ¢ (5.16).

On the other hand, (5.15) implies A\(-) = 0, and so from (5.10): é(t) =
— JEX(S)[6(A(8)) 4+ XN(s)7(5)]ds. Now (5.18) follows from the increase of é(-)
and the nonnegativity of 4(X) + N7, since 7 takes values in K.

From (5.16) (and its consequences (5.15), (5.18)), the process )A(() of (5.6)
and (5.13) coincides with XV(O%0(.) “and we have: )A((T) = B almost surely,
’yk()f(() is a P martingale; thus (5.17) is satisfied with 7 = #. On the
other hand, suppose that (5.17) holds; then V(0) = FEBv\(T)], so (5.16)
holds.

Theorem 5.3 Let B be a K-hedgeable contingent claim. Suppose that, for
any v €D with §(v)+v'7 =0,

Q. () in (5.3) is of class DL[0,T], under P". (5.19)

Then, for any given X € D, the conditions (5.15), (5.16), (5.18) are

equivalent, and imply

{ B is K-attainable (by a portfolio w), and the }

5.20)
corresponding vo(-) XV O™0() is a PO-martingale ( )

Proof: We have already shown the implications (5.15) < (5.16) = (5.18).
To prove that these three conditions are actually equivalent under (5.19),
suppose that (5.18) holds; then from (5.10): Ay(-) = 0, whence the P*-local
martingale () is actually a P*-martingale (from (5.5) and the assumption
(5.19)); thus (5.15) is satisfied.

Clearly then, if (5.15), (5.16), (5.18) are satisfied for some A € D, they

are satisfied for A = 0 as well; and from Theorem (5.2), we know then that

(5.20) (i.e., (5.17) with A = 0) holds.

Remark 5.1 (i) Loosely speaking, Theorems 5.2, 5.3 say that the supremum
in (5.16) is attained if and only if it is attained by X = 0, if and only if the
Black-Scholes (unconstrained) portfolio happens to satisfy constraints.
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(i1) Tt can be shown that the conditions V(0) < oo and (5.19) are satisfied
the latter, in fact, for every v € D) in the case of the simple Furopean call
) ) Yy P P

option B = (5((T) — k)*, provided
the function 2+ d(x) 4+ 27 is bounded from helow on K. (5.21)

The same is true for any contingent claim B that satisfies B < a.5{(T) a.s.,
for some o € (0,00). Note that the condition (5.21) is indeed satisfied, if
the convex set K contains both the origin and the point (1,0,...,0) (and
thus also the line-segment adjoining these points); for then zy + §(x) >
21+ SUPgaei (—am) =2 >0, Vo € K.

We would like now to have a method for calculating the price h(0). In order to
do that, we assume constant market coefficients r, b, ¢ and consider only the
claims of the form B = b(S(T)), for a given, lower-semicontinuous function
b. Similarly as in the no-constraints case, the minimal hedging process will
be given as X (t) = V(t,5(1)), for some function V(¢,s), depending on the
constraints. Introduce also, for a given process v(-) in R? the auxiliary,

shadow economy vector of stock prices S¥(-) by

dSY (1) = S (1) {rdt + Zij%dwﬁ(t)}

and notice that its distribution under measure P, is the same as the one of

S(-) under Py. From Theorem 5.1 we know that

V(t,s) = sup v |:b(S(T))€~LT(T+5(U(S))MS

veD

S(t) = 3] . (5.22)

We will show that this complex looking stochastic control problem has a
simple solution. First, we modify the value of the claim by considering the

following function:

2)(9) = sup b(seil')e*g(”).
UGR'

Here, se™” = (s1e™, ..., 84¢ )", and we use the same notation for the

componentwise product of two vectors throughout.
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Theorem 5.4 The minimal K-hedging price function V(t,s) of the claim
b(S(T)) is the Black-Scholes cost function for replicating i)(S(T)). In partic-

wlar, under technical assumptions, it is the solution to the PDFE

d d d
Vi+ %Z > aijsisiVes, +1 (Z siVi — V) =0, (5.23)

=1 7=1 =1

with the terminal condition

V(T,s)=b(s), ser?, (5.24)
and the corresponding hedging strateqy ™ satisfies the constraints. Under

technical assumptions, il is given by
mi(t) = s (O)Vs, (8, s(1))/V(t, s(t)), 1=1,....d. (5.25)

Proof: (a) We first show that hedging b(S(7T')) under constraints is no more
expensive than hedging ?)(S(T)) without constraints. Let v € D and observe
that, from the properties of the support function and the cone property of
i

b

— b

o P Y

(4)
T T
(7:7:)/ §(v)ds > 5(/ vyds),
Jt Jt
T .
(777)/ veds is an element of K,
Ji
where [ v(s)ds := ([ 11 (s)ds, ..., [ va(s)ds)’. Moreover, we have
(iv) S(1) = Si(t)eh ),

because the processes on the left-hand side and the right-hand side satisfy
the same linear SDE. Then, for every v € D we have
~ T ~ T T
Ey[b(S(T))eifo (r+5(y(s)))r]s] S Ey[b(sy(T)effO y(s)r]s)effg(fo y(s)r]s)efrT]
< EY[sup b(SY(T)e V)e e (5.26)
UGR'

~
~

— S (TY)e ] = EUT(S(T))e .
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Similarly for conditional expectations of (5.22), hence V/(1, s) is no larger
than the Black-Scholes price process of the claim 2)(S(T)).

(b) To conclude we have to show that to superreplicate b(S(7T')) we have
to hedge at least 2)(S(T)). It is sufficient to prove that the left limit of V' (1, s)
at t = T is larger than b(s). For this, let {t*} be the maximizing sequence
in the cone K attaining i)(s), i.e., such that b(se*”k)e*‘s(”k) converges to i)(@)
as k goes to infinity. Then, using (for fixed + < T') constant deterministic
controls v (t) = v* /(T — 1) in (5.22), we get

V(t,s) > EOB(S(T)e " )e S e r(T=0

S(t) = s],

hence
lim V(£,5) > b(se™ )e ")

ST
and letting £ to infinity, we finish the proof. Here is a sketch of a PDE proof
for part (a) in the proof above: Let V be the solution to (5.23), (5.24). For
a given v € R’, consider the function W, = (sV;)'v + §(v)V, where V is
the vector of partial derivatives of V with respect to s;, 2 = 1,...,d. By
Theorem 13.1 in Rockafellar (1970), to prove that portfolio m of (5.25) takes
values in K, it is sufficient to prove that W, is non-negative, for all v € K.
It is not difficult to see (assuming enough smoothness) that W, solves PDE
(5.23), too. Moreover, it is also possible to check that W, (s,T) > 0. So, by

the maximum principle, W, > 0 everywhere.

Example 5.2 We restrict ourselves to the case of only one stock, d =1, and

the constraints of the type
K =[—1,u], (5.27)

with 0 <[, u < 400, with the understanding that the interval K is open to
the right (left) if u = 400 (respectively, if [ = 400). It is straightforward to
see that

i) = vt +uv,
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and K =R if both [ and u are finite. Tn general,
R’:{.TETR s> 0ifu=4o00, 2 <0if]l=+4occ}.

For the European call b(s) = (s — k)T, one easily gets that i)(@) = oo, if
u <1, i)(@) = s if w = 1 (no-borrowing) and i)(@) = b(s) if u = oo (short-
selling constraints don’t matter for the call option). For 1 < u < oo we have

(by ordinary calculus)

w-{ L ik —

S) = u, ;
L (71,71)3 . ku
u—1 ( ku ) S < u—1

For the Furopean put b(s) = (k—s)*, one gets b=bifl = oo (borrowing

(s
b

constraints don’t matter), k if I =0 (no short-selling), and otherwise

. k— s ;s < li_]1
b(?) - k ku ! .
I+ (<z+1>s) PS>

Numerical results on hedging these (and other) options under the above

constraints can be found in Broadie, Cvitani¢ and Soner (1998).

6 The Case of Concave Drift

In this section we consider the case of an agent whose drift is a concave
function of his trading strategy. The most prominent example is the case in
which the borrowing rate R is larger than the lending rate r. Moreover, it
also includes examples of a “large investor” who can influence the drift of
the asset prices by trading in the market (see Cuoco and Cvitani¢ 1998).
We assume that the wealth process X (1) satisfies the stochastic differen-

tial equation

AX (1) = X(£)g(t, m)dt + X (1)’ () (HdW (1) — de(t), X(0) =z > 0, (6.1)
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where function g(t,-) is concave for all t € [0,7T], and uniformly (with respect

to 1) Lipschitz:
lg(t.x) — gt )l < kllx —yll, V1 e[0,T]; oy €r?,

for some 0 < k < 0o. Moreover, we assume ¢g(-,0) = 0.
In analogy with the case of constraints we define the convex conjugate

function ¢ of ¢ by
g(t,v) := sup{g(t,m) + 7'v}, (6.2)

wERA
on its effective domain D, := {v : g(v,t) < oo}. Introduce also the class D
of processes v(t) taking values in Dy, for all £. Tt is clear that under above
assumptions D is not empty. We also assume, for simplicity, that function
g(t,-) is bounded on its effective domain, uniformly in ¢.
For a given {F;}—progressively measurable process v/(-) with values in R?

we introduce
wlt) = exp{— [ gls,vdsh, (1) = 7,(0.1),
A7,(1) = o (W) Z, (AW (1), Z,(0) = 1, T,(1) = Z,()5(1) . (6.3)
For every v € D we have (by Tto’s rule)
HAODX(W) + [ H) X)) — gls,m) = 7 (5)(3)ds + defs)]
— o+ ()X () [F(5)o(s) + o (s)ls)] dW(s). (6.4)

In particular, the process on the right-hand side is a nonnegative local mar-
tingale, hence a supermartingale. Therefore we get the following necessary

condition for m to be admissible:

sup K [HU(T)X(T) + ./OT H, ()X (s){g(s,vs) — g(s,7s) — W’(s)y(s)}ds] <.

veD
)

——~
>
It
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The supermartingale property excludes arbitrage opportunities from this
market: if 2 = 0, then necessarily X(¢) =0,V 0 <t < T, almost surely.

Next, for a given v € D, introduce the process

as well as the measure
P,(A) = E[Z,(T)14] = E"[14], A€ Fr.

It can be shown under our assumptions that the sets D; are uniformly
bounded. Therefore, if v € D, then 7,(:) is a martingale. Thus, for ev-
ery v € D, the measure P, is a probability measure and the process W, (+)
is a P,—Brownian motion, by Girsanov theorem.

Given a contingent claim B, consider, for every stopping time 7, the
F-measurable random variable

V(7) := esssup K’ [By,(r, T)|F.].
veD

The proof of the following theorem is similar to the corresponding theorem

in the case of constraints.

Theorem 6.1 For an arbitrary contingent claim B, we have h(0) = V(0).
Furthermore, there exists a pair (7,¢) € Ag(V(0)) such that XVOF¢() =
V().

The theorem gives the minimal hedging price for a claim B; in fact, it
is easy to see (using the same supermartingale argument as before) that the
process V(-) is the minimal wealth process that hedges B. There remains

the question of whether consumption is necessary. We show that, in fact,

e(-) =0.

Theorem 6.2 Fvery contingent claim B is attainable, namely the process

¢(+) from Theorem 6.1 is a zero-process.
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Proof : Let {v,;n € N} be a maximizing sequence for achieving V(0), i.e.,
lim,, oo B[ By, (T)] = V(0). Similarly to (6.5), one can get

sup 7 [wwm e %<t>de<t>] < V(o).
vEe .
Since V(T) = B, this implies lim, o F™ [ ~,, (t)dé(t) = 0 and, since the
processes v, (-) are bounded away from zero (uniformly in n), lim, ., F[7,, (T)¢(T)] =
0. Using weak compactness arguments as in Cvitani¢ & Karatzas (1993, The-
orem 9.1) we can show that there exists v € D such that lim,_., F[7,, ¢(T)] =
E17,(T)e(T)] = 0 (along a subsequence). Tt follows that ¢(-) = 0. o

The theorems above also follow from the general theory of Backward

Stochastic Differential Equations, as presented in El Karoui, Peng and Quenez

(1997).

Example 6.3 Different borrowing and lending rates. We have studied so far
a model in which one is allowed to borrow money, at an interest rate R(-)
equal to the bank rate r(-). In this section we consider the more general
case of a financial market M* in which R(-) > r(-), without constraints on
portfolio choice. We assume that the progressively measurable process R(-)
is also bounded.

In this market M* it is not reasonable to borrow money and to invest
money in the bank at the same time. Therefore, we restrict ourselves to

policies for which the relative amount borrowed at time ¢ is equal to (] —

PO m;(t))i. Then, the wealth process X = X7™° corresponding to initial

capital 2 > 0 and portfolio/consumption pair (7, ¢), satisfies
dX(t) = r()X(t)dt —de(t)
X (1) [w'(t)a(t)dwo(t) (R — (1) (1 - z_j w,;(t))dt] .

1

3

We get g(v(t)) = r(t) — i (1) for v € D, where
D :={ v; v progressively measurable, R? — valued process with
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r—R<uvy=...=1, <0, LOP —a.e.}
We also have
(1)) — alt,m(0) ~ #(Oult) = [RE) (1) +n(0)(1 = 5L 7))
(13 )

for 0 <t < T. It can be shown, in analogy to the case of constraints, that

the optimal dual process 5\() € D can be taken as the one that attains zero

in this equation, namely as

xw:xun,mezvmmeﬂglﬁMNy ©

Assume now constant coefficients, and observe that the stock price pro-

cesses vector satisfies the equations

=1
d
= SiO(r —vi()dt + > o dW] ()], 1 <1<d,
=1
for every v € D. Consider now a contingent claim of the form B = o(S(7T)),
for a given continuous function ¢ : TRi — [0,00) that satisfies a polynomial
growth condition, as well as the value function

Q1 5) := sup " [(S(T))e o trertonds

veD

S(t) = ]

on [0,T] x %, Clearly, the processes X,V are given as

~

X(1)=Q(t,5(1), V()= " X(1); 0<t<T,
where () solves the semilinear parabolic partial differential equation of Hamilton-

Jacobi-Bellman (HJB) type

290 1 920 90
o T §;¥“i.7<9i<9.7m T _max (r— V1){Zi:5vtaf% —Q} =0,



for0 <t < T, SETRi,

Q(T,s) = p(s); s € R}

(see Ladyzenskaja, Solonnikov & Ural’tseva 1968 for the basic theory of such
equations, and Fleming & Rishel 1975, Fleming and Soner 1993 for the con-
nections with stochastic control). The maximization in the HJB equation

is achieved by vf = (r — R)1 (5,5 22503} the portfolio #(-) and the process
A1(+) are then given, respectively, by

Si(t) - 5-Q(1,5(1))
Q(t,5(1)

mill) =

=1 d

PURERRT

and
$20) = (= B s
The HJB PDE becomes

a0 1 > 0 * 00 T
rn + 5 27: 27: 880 7357;(75'7‘ + R(Z; s,af% — Q) —r 27: Sz(f)f% —Q = 0.

(5) d
Suppose now that the function @ satisfies 3, ;2 T 2 o(s), Vs eri.
Then the solution () also satisfies this inequality:

DT AAGL) aQ(t, s)

o ZQs), 0T

for all s € RY and is given as the solution to the Black-Scholes equation with

r replaced with R

0Q 1 o Q)
= 3 Z 27: S G B T R(Z Sig

Q)—O;t<T , 8> 0

O(T.s) = ¢(s) 55> 0

7 e

Tn this case the seller’s hedging portfolio #(-) always borrows: S0, #;(1) >
1, 0 <t < T, and it was to be expected that all he has to do is use R as the
interest rate. Note, however, that this price may be too high for the buyer
of the option.



7 Utility functions

A function U : (0,00) — ® will be called a wutility function if it is strictly

increasing, strictly concave, of class €', and satisfies

U'04+) :==limU' () =00, U'(cc) := lim U'(x)=0.

70 =00

We shall denote by I the (continuous, strictly decreasing) inverse of the
function U’; this function maps (0,00) onto itself, and satisfies 1(0+) =

00, [(00) = 0. We also introduce the Legendre-Fenchel transform

Uly) == max[U(z) — zy] = U(I(y)) —yl(y), 0<y<oo

>0

of —U(—x); this function U is strictly decreasing and strictly convex, and

satisfies
[NJ'(y) =—1I(y), 0<y< oo,

Ulx) = m;(])ﬂ[f](y) +ay] = U (2)+2U'(2), 0<z<oo.
y
It is now readily checked that
U(I(y)) = Ulx) + ylI(y) — ]

(U () + 2 U(r) — 4] < T(y)
are valid for all x > 0,y > 0. It is also easy to see that

U(oo) = U(04), U(0+) = U(oo)
hold; see Karatzas et al. (1991), Lemma 4.2.

For some of the results that follow, we will need to impose the following

conditions on our utility functions:

¢ clU'(¢) is nondecreasing on (0, 00) ; (7.1)
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for some a € (0,1),7 ¢ (1,00) we have: oll'(z) > U'(yz), Ve (0,00).
(7.2)

Condition (7.1) is equivalent to
y — yl(y) is nonincreasing on (0,00) ,

and implies that

= U(e”) is convex on R .

(Tf U is of class C?, then condition (7.1) amounts to the statement that

70U“(c)
0)
not exceed 1. For the general treatment under the weakest possible conditions

, the so-called “Arrow-Pratt measure of relative risk - aversion”, does

on the utility function see Kramkov and Schachermayer 1998.)

Similarly, condition (7.2) is equivalent to having
Ioy) <~1(y), Vye(0,00) forsome ae(0,1), ~v>1.
Iterating this, we obtain the apparently stronger statement

Vae(0,1), 3v¢(1,00) such that [(ay) <~I(y), Yye(0,00).

8 Portfolio optimization under constraints

In this section we consider the optimization problem of maximizing utility
from terminal wealth for an investor subject to the portfolio constraints given

by set K, i.e., we want to maximize

J(wym) = BU(X™™(T)) ,

over the class Aj of constrained portfolios 7 for which (7,0) € A’(x) and

which satisfy
FU(X™™(T)) < co.



The value function of this problem will be denoted by

V(z):= sup J(x;m), 2 € (0,00). (8.1)
meAy ()

We assume that V(z) < oo, Vo € (0,00) . It is fairly straightforward
that the function V(-) is increasing and concave on (0,00). and that this
assumption is satisfied if the function U is nonnegative and satisfies the

growth condition
0< U(x) <k(l+2"); Va € (0,00) (8.2)

for some constants £ € (0,00) and a € (0,1) - see Karatzas et al. (1991)

for details.

Recall the notation
H,(t) = 7,(t)7Z,(1)
of (4.8). We introduce the function

X, (y) = E[H(T)I(yH(T)], 0<y< oo,

and the class H of K-valued, progressively measurable processes v(-) such
that 7 [ |[v(t)||2dt + FE [} 6(v(t))dt < co. Consider the subclass D' of H
given by

D={veH, X(y)<oo, Yy € (0,00)}.

For every v € T/, the function X, (+) is continuous and strictly decreasing,

with X,(04) = oo and X, (c0) = 0; we denote its inverse by Y, ().

Next, we prove a crucial lemma, which provides sufficient conditions for
optimality in the problem of (8.1). The duality approach of the lemma and
subsequent analysis was implicitly used in Pliska (1986), Karatzas, Lehoczky
& Shreve (1987), Cox & Huang (1989) in the case of no constraints, and
explicitly in He & Pearson (1991), Karatzas et al. (1991), Xu & Shreve
(1992), Cvitani¢ and Karatzas (1993) for various types of constraints.
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Lemma 8.1 For any given x >0, y > 0 and 7 € A'(x), we have
EU(X™™(T)) < EU(yH,(T)) +yz, ¥YveH. (8.3)

In particular, if & € A'(x) is such that equality holds in (8.3), for some A € H
and § > 0, then 7 is optimal for our (primal) optimization problem, while X

is optimal for the dual problem

V() = inf RU(GH.(T)) == inf J(g;v). (8.4)

Furthermore, equality holds in (8.3) if

X*H(Ty=HyH,(T)) a.s., (8.5)
S(v) = —v' () (t) a.e., (8.6)
EIH(T)X™™(T)] =« (8.7)

(the latter being equivalent to v € D' and y = Y, (x), if (8.5) holds).

Proof: By definitions of I/, § we get

UX(T) < DT 4y HT)X(T) 4 [0 X 0[50 + V0=

The upper bound of (8.3) follows from Proposition 4.1 (also valid for v(-) €
H); condition (8.5) follows from the definition of [}(-)7 conditions (8.6) and
(8.7) correspond to H,(-) X (-) being a martingale, not only a supermartingale.

O

Remark 8.1 Lemma 8.1 suggests the following strategy for solving the op-
timization problem:

(i) show that the dual problem (8.4) has an optimal solution A, € D’ for
all y > 0;

(i1) using Theorem 5.1, find the minimal hedging price h,(0) and a cor-
responding portfolio 7, for hedging By, = I(yH, (T));
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(iii) prove (8.6) for the pair (7, A, );

(iv) show that, for every > 0, you can find § = y, > 0 such that
v = hy(0) = B[, (TYI(H, (T)].

Then (i)-(iv) would imply that 7; is the optimal portfolio process for the
utility maximization problem of an investor starting with initial capital equal

to x.

To verify that step (i) can be accomplished, we impose the following

condition:
Yy € (0,00), FJveH suchthat J(y;v):= EU(yH,(T)) < oo (8.8)
We also impose the assumption
U0+) >~ , U(co)=c0. (8.9)

Under the condition (8.2), the requirement (8.8) is satisfied. Indeed, we
get
0< Uly) <w(l+y"); ¥y € (0,00)

for some & € (0,00) and p = 2.
Fven though the log function does not satisfy (8.9), we solve that case

directly in examples below.

Theorem 8.1 Assume that (7.1), (7.2), (8.8) and (8.9) are satisfied. Then
condition (i) of Remark 8.1 is true, i.e. the dual problem admits a solution

in the set D', for every y > 0.

The fact that the dual problem admits a solution under the conditions of
Theorem 8.1 follows almost immediately (by standard weak compactness
arguments) from Proposition 8.1 below. The details, as well as a rela-
tively straightforward proof of Proposition 8.1, can be found in Cvitani¢ and
Karatzas (1992). Denote by H' the Hilbert space of progressively measurahle

processes v with norm [v] = F [ v2(s)ds < co.
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Proposition 8.1 Under the assumptions of Theorem 8.1, the functional

J(y;) : H' — RU{+o0} of (8.4) is (i) convex, (ii) coercive: limpjse J(y;v)
= oo, and (iii) lower-semicontinuous: for every veH' and {v,},.n C H' with

[vn —v] — 0 as n — oo, we have

J(y;v) < lim J(y;v) -

n—r 00

We move now to step (ii) of Remark 8.1. We have the following useful
fact:

Lemma 8.2 For everyv € H, 0 <y < oo, we have
BIHL(TY B < BIHA (T)BY) (3.10)

In fact, (8.10) is equivalent to A, being optimal for the dual problem,
but we do not need that result here; its proof is quite lengthy and technical
(see Cvitani¢ and Karatzas 1992, Theorem 10.1). We are going to provide a

simpler proof for Lemma 8.2, but under the additional assumption that
ETH, (TYI(yH,(T))] < oo, Yv e H,y > 0. (8.11)

Proof of Lemma 8.2: Fix ¢ € (0,1),v € H and define (supressing depen-

dence on t)

G.:=(1—e)H\,+ecH,, p.:= G2 — e)H \, Ay +eH,v),
fie = G (1= £ H,B00) + e Hod(0).

Then p. € H, because of the convexity of K. Moreover, we have
dG. = (0 + 0~ 'y )GodW — .G d1,

and convexity of & implies d(u.) < fi., and therefore, comparing the solutions

to the respective (linear) SDE’s, we get
Co() < Hou(), as.
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Since A, is optimal and U is decreasing, this implies
e (BIU(yH(T)) = U(yG(T))]) < 0. (8.12)

Next, recall that 7 = —0’ and denote by V. the random variable inside
the expectation operator in (8.12). Fix w € Q, and assume, supressing the
dependence on w and T, that H, > H, . Then e "W = I(F)y(H, — H,,),
where yH, < F' <yH, +ey(H,— H,,). Since [ is decreasing we get e V. >
yl(yH,)(H, — H,,). We get the same result when assuming H, < H, . This
and assumption (8.11) imply that we can use Fatou’s lemma when taking
the limit as e | 0 in (8.12), which gives us (8.10). o

Now, given y > 0 and the optimal A, for the dual problem, let 7, be the
portfolio of Theorem 5.1 for hedging the claim B, = I(yH, (T)). Lemma
8.2 implies that, in the notation of Section 5,

hy(0) = V,(0) = E[H\ (T)I(yH,,(T))] = initial capital for portfolio m,,

so (8.7) is satisfied for & = h,(0). It also implies, by (5.18), that (8.6) holds
for the pair (m,, A, ). Therefore we have completed both steps (ii) and (iii).

Step (iv) is a corollary of the following result.

Proposition 8.2 Under the assumptions of Theorem 8.1, for any given x >

0, there exists §y > 0 that achieves inf,5o[V(y) + 2y] and satisfies

v =X (9)

Y

For the (straightforward) proof see Cvitani¢ and Karatzas (1992, Propo-
sition 12.2). We now put together the results of this section:

Theorem 8.2 Under the assumptions of Theorem 8.1, for any given x > ()
there exists an optimal portfolio process m for the utility maximization prob-
lem (8.1). Process 7 is equal to the portfolio of Theorem 5.1 for minimaly
hedging the claim I(gHy (T)), where § is given by Proposition 8.2 and Ay is
the optimal process for the dual problem (8.4).
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9 Examples

Example 9.4 Logarithmic utility. 1fU(x) = log x, we have [ (y) = 1;7 Uly) =

—(1 +logy) and
1 1
X(y)=~, V(z)=—
y T

and therefore, the optimal terminal wealth is

1
CHAT)

Xa(T) = (9.1)

for AeH optimal. (In particular D' = H in this case). Therefore,

BT () H,(T))] = —1 —log ]; + £ (log Hu](ﬂ) .

But

K (log

HU(T)) - E,/OT () +6(v(s)) + %IIH(S) + o (s)u(s)]1%)ds

and thus the dual problem amounts to a point-wise minimization of the

convex function &(x) + 1|[0(1) + o~ (£)z[|> over zeK, for every t € [0,7T1:

A1) = argmin [ 28(x) + [10(1) + o (1)[ ]

re K

Furthermore, (9.1) gives

and using Ito’s rule to get the SDE for H\(-)X\(+) we get, by equating the
integrand in the stochastic integral term to zero, o’(#)7(t) = 0,\(t), (@ P -
a.e.

We conclude that the optimal portfolio is given by

(1) = (o(t)o'(1)) A1) + b(t) — r(1)1].
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Example 9.5 (Constraints on borrowing) From the point of view of ap-
plications, an interesting example is the one in which the total proportion
S, mi(t) of wealth invested in stocks is bounded from above by some real
constant @ > 0. For example, if we take a = 1, we exclude borrowing; with
€ (1,2), we allow borrowing up to a fraction 1 — a of wealth. If we take

a = 1/2, we have to invest at least half of the wealth in the bank.
To illustrate what happens in this situation, let again U(x) = log «, and,
for the sake of simplicity, d = 2, ¢ = unit matrix, and the constraints on the

portfolio be given by
K ={azer? 21> 0,22 >0, 7 + 22 < a}

for some ac(0, 1] (obviously, we also exclude short-selling with this K). We
have here §(z) = amax{x,,z, }, and thus R = R% By some elementary
calculus and /or by inspection, and omitting the dependence on ¢, we can see
that the optimal dual process X that minimizes (|0, + 14||*> 4+ 6(v4), and the
optimal portfolio m, = 6, + A,, are given respectively by

)\:*9, W:(Ojo)l ﬂc 91792§0

(do not invest in stocks if the interest rate is larger than the stocks return

rates),
)\ = (07 *92) ;T = (917 )I ﬂc (91 > 0 92 < 0 a > 91 s
A= (a—01,—0)); 7m=(a,0) if 6, >0,0,<0, a<¥b,
A= ( 9170), _( 2)/ if 91<0 92>0 (]>(927
A= ( 917(]*92); (07(])I if 91 SO”QQZO, (]/<(927

(do not invest in the stock whose rate is less than the interest rate, invest

X min{a, 6;} in the i-th stock whose rate is larger than the interest rate),
)\:(0,0)', 7T:(9 ﬂc 91792207 91+92§(I

(invest 0, X in the respective stocks - as in the no constraints case - whenever

the optimal portfolio of the no constraints case happens to take values in K),

)\ :((],*(917*92)/; 7T:((],70)I ﬂc 91792207 (ISH] *927
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)\ :(*917(],*92)1; 7_[_:(07(]/)/ ﬂc 91792207 (ISHQ*H]

(with both 64,0, > 0 and 6; 4+ 6, > a do not invest in the stock whose rate
is smaller, invest a X in the other one if the absolute value of the difference

of the stocks rates is larger than «a),

(],*(91*92 (],—I-H]*HQ (],—I—(QQ*(Q]
M =A=—F"—; sy T T

2 2
if 01,0 > 0,60, + 0, > a > [0, — 03] (if none of the previous conditions is

satisfied, invest the amount £ X in the stocks, corrected by the difference of

their rates).

Let us consider now the case, where the coefficients r(-),b(-), o(-) of the
market model are deterministic functions on [0, 7], which we shall take for
simplicity to be continuous. Then there is a formal HJB (Hamilton-Jacobi-

Bellman) equation associated with the dual optimization problem, namely,

Qe+ ISy QullOn) + o (eIl — yQu3()] — y@ur() =0 (92

wek
in [0,7) x (0,00);
Q(T.y) = Uly); ye(0,00).
If there exists a classical solution @ ¢ C'"([0,T) x (0,00)) of this equa-
tion, that satisfies appropriate growth conditions, then standard verification

theorems in stochastic control (e.g. Fleming and Soner 1993) lead to the

representation

Viy) =Q(0,y), 0<y<oo

for the dual value function.

Example 9.6 (Cone constraints) Suppose that § = 0 on K. Then

A1) = argmin [0(t) + o' ()|

reK
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is deterministic, the same for all ye(0,00), and the equation (9.2) becomes
1 ~ .
Qi+ SOy Quy = r()yQy + Ur(t,y) = 05 in [0,7) x (0,00) .

Example 9.7 (Power utility) Consider the case U(x) = %7 x ¢ (0,00) for
some a ¢ (0,1). Then [Nf(y) = %yfp, 0 <y < oo with p:= -==. Again, the
process A(-) is deterministic, namely

A1) = argmin [116(1) + 0~ (Na]* +2(1 — a)3(x) ]

relK
and is the same for all y¢(0,00). In this case one finds

ma(t) = —— (o ()’ (1)) " b{1) — (1)1 + A1) -

1 -«

Example 9.8 (Different interest rates for borrowing and lending) We con-
sider the market with different interest rates for borrowing R, and lending r,
R(-) > r(-). The methodology of the previous section can still be used in the
context of the models introduced in Section 6, of which the different interest
rates case is just one example. We are looking for an optimal process A, € H
for the corresponding dual problem, in which function §(-) is replaced by
function g(-) (see Cvitani¢ 1997 for details), and, for any given x € (0, c0),
for an optimal portfolio 7 for the original primal control problem. In the
case of logaritmic utility U(x) = log x, we see that A(t) = A{(1)1, where
M) =arg | min (204 0 0 (1411).
With A(t) :==tr[(c " (1)) (' (1))], B(t) := #(1)o"(1)1, this minimization is

achieved as follows:

1;!;()75) coaf 0< B(t) 1< AM)(R(t) — r(t))
A1) = 0 ;oif A1) <1

(1) - R() 5 i B() 1> AR (1)
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The optimal portfolio is then computed as

(0}0’;)71 [bf — (7"75 —I— BfA:1 )1] ; 0 < Bt — 1 S Af(Rf — 7"75)
fr,g = (0}0’;)71 [bf — 7"751] ; Bt S 1
(0}0’;)71 [bf - Bfl] ; Bt —1 Z Af(Rf - 7"75)

In the case U(x) = %7 for some o € (0, 1), we get M(#) = Ai(#)1 with

. . —1 2
Awwfamdwgmggpamfaw+nmw+a (1)1]?]

B i 0< B — T+ a < A((R(H) — (1))
= 0 o f Bit)<1l—a
r(t) = R(@) 5 of  B@)—1+a> A1) (R({I) —r(1)).

The optimal portfolio is given as

(Ut02)71 [bf — (7"75 + Bf%]f-l—(y)l] ; 0 < Bt —1 +a < Af(Rf — 7"75)

At
= (), — 1] : B, <1—a
() p, — Ry . B 1+a> AR )

10 Utility based pricing

How to choose a price of a contingent claim B in the no-arbitrage pricing
interval [il/(()),h(())] in the case of incomplete markets, i.e., when the inter-
val is non-degenerate (consists of more than just the Black-Scholes price)?
(Here, il(O) is the maximal price at which the buyer of the option would
still be able to hedge away all the risk.) There have been many attempts
to provide a satisfactory answer to this question. We describe one suggested
by Davis (1997), as presented in Karatzas & Kou (1996), to which we refer
for the proofs of the results presented below. The approach is based on the

following “zero marginal rate of substitution” principle: Given the agent’s

utility function U and initial wealth x, the “utility based price” p is the one
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that makes the agent neutral with respect to diversion of a small amount of
funds into the contingent claim at time zero, while maximizing the utility

from total wealth at the exercise time T. Tt can be shown that
p= E[H\ (T)B], (10.1)

where A, is the associated optimal dual process. In particular, this price can
be calculated in the context of examples of the previous section, and does
not depend on U and z, in the case of cone constraints (§ = 0) and constant
coefficients (Example 9.6). Tt can also be shown that, in this case, it gives
rise to the probability measure P, which minimizes the relative entropy with
respect to the original measure P, among all measures P,, v € D.

We describe now more precisely what we mean by “utility based price”.
For a given —x < § < x and price p of the claim, we introduce the value
function

Q(0,p,x):= sup FEUX"*(T)+ gB) (10.2)
TEA, (#—8) p
In other words, the agent acquires é/p units of the claim B at price p at

time zero, and maximizes his/her terminal wealth at time T". Davis (1997)

suggests to use price p for which

Q
— (4, p, =
(f)(s( 7p7T) 5:0 07

so that this diversion of funds has a neutral effect on the expected utility.

Since the derivative of () need not exist, we have the following

Definition 10.1 For a given 2 > 0, we call p a weak solution of (10.2) if, for
every function ¢ : (—z,2) —= R of class C'' which satisfies

2(8) > Q3. p.a), Y8 € (—r.2), 2(0) = Q(0.p, ) = V(a),

we have ¢'(0) = 0. If it is unique, then we call it the wutility based price of
B.

Theorem 10.1 Under the conditions of Theorem 8.2, the utility based price
of B is given as in (10.1).

44



11 The transaction costs model

In the remaining sections we consider a financial market with proportional
transaction costs. More precisely, the market consists of one riskless asset,

bank account with price B(-) given by
dB(t) = B(t)r(t)dt, B(0)=1

and of one risky asset, stock, with price-per-share S(:) governed by the

stochastic equation
AS(1) = SN + o (W (1], S(0) = s € (0, 0),

for t € [0, T]. Here, W = {W(#),0 <t < T} is a standard, one-dimensional
Brownian motion on a complete probability space (©, F,P), endowed with
a filtration {F;}, the augmentation of the filtration generated by W (-). The
coefficients of the model r(-), b(-) and &(-) > 0 are assumed to be bounded
and F—progressively measurable processes; furthermore, o(+) is also assumed
to be bounded away from zero (uniformly in (#,w)).

Now, a trading strategy is a pair (L, M) of F—adapted processes on
[0, 7], with Teft-continuous, nondecreasing paths and L(0) = M(0) = 0; L.(¢)
(respectively, M(t)) represents the total amount of funds transferred from
bank-account to stock (respectively, from stock to bank-account) by time ¢.
Given proportional transaction costs 0 < A, p < 1 for such transfers, and
initial holdings =,y in bank and stock, respectively, the portfolio holdings
X() = X»IM( V() = Y¥M () corresponding to a given trading strategy

(L, M), evolve according to the equations:
t
Xt)y=a2— (1 4+NLE)+ (1 —p)M() + / X(uw)r(u)du, 0 <t <T (11.1)
Jo

Yt)=y+ L(t)— M)+ ./Ot Y (u)[b(w)du 4+ o(u)dW (u)], 0 <t <T. (11.2)
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Definition 11.1 A contingent claim is a pair (Co, C1) of Fr—measurable
random variables. We say that a trading strategy (1., M) hedges the claim
(Co, Cy) starting with (x,y) as initial holdings, if X (-),Y(:) of (11.1), (11.2)
satisfy

X(T) 4+ (1 V() > ot (1 ) (13)

X(TYy+ (1 4+M)Y(T)>Co+ (1 4+ X)Ch. (11.4)
Interpretation: Here Cy (respectively, Cy) is understood as a target-position
in the bank-account (resp., the stock) at the terminal timet = T': for example

Co = —kligmysiy, Cv = S(T)isry>iy
in the case of a Furopean call-option; and

Co = klisiryery, Cr = —S(T)sery<ry

for a European put-option (both with exercise price & > 0).
“Hedging”, in the sense of (11.3) and (11.4), simply means that one is
able to cover these positions at ¢ = T. Indeed, assume that we have both

Y(T)> Cy and (11.3), in the form
X(T)+ (1 —p)[Y(T) = Ci] > Co

then (11.4) holds too, and the agent can cover the position in the bank-
account as well, by transferring the amount V(7)) — C7 > 0 to it. Similarly
for the case Y(T') < (4.

The equations (11.1), (11.2) can be written in the equivalent form

1) = () 10— wavte) = (- nanio] . X0 =2 (13

d (Z((;))) - (Szﬂ) L) — dM@D)], Y(0) =y (11.6)

in terms of “number-of-shares” (rather than amounts) held.
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12 State-price densities

Consider the class D of pairs of strictly positive F—martingales (Zo(+), Z1(-))
with
Zo(0) =1, z:=71(0) € [s(1 — w),s(1 + )]

and
1~ u < R(t) = 70?‘)(;)(><1+/\ VO<t<T, (12.1)
where
P(t) := (—7; =5+ / (u) —r(u))du 4+ o(u)dW(u), 0<t<T
(12.2)

is the discounted stock price.

The martingales Zo(-), 71(+) are the feasible state-price densities for hold-
ings in bank and stock, respectively, in this market with transaction costs;
as such, they reflect the “constraints” or “frictions” inherent in this mar-
ket, in the form of condition (12.1). From the martingale representation

theorem there exist F—progressively measurable processes 6q(-), 01(-) with

fo (2(1) + 67 (1))dt < oo a.s. and

' 1 st
zuy—zmwn{/emwmmg5/9%@%},¢—mu (12.3)
Jo Jo
thus, the process R(-) of (12.1) has the dynamics

AR(1) = RO (1) + (1) — b(1) — (02(0) — Bo(1)) (1) + Bo(1))]ds
FRIO() — o(t) — b()V (1), RO)==/s.  (12.4)

Remark 12.1 A rather “special” pair (75(-), 77(-)) € D is obtained, if we
take in (12.3) the processes (6o(-),61(+)) to be given as

%Mriﬁgg@wﬂmy—dﬂ+%@,0<t<ﬂ (12.5)
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and let 75(0) = 1,

y 7
UM%Rﬁ%:amm:s
the only member (75(-), 77 (+)) of D, if A = u = 0. Notice that the processes

05(-), 07 (-) of (12.5) are bounded.

(1 —p) < 7Z7(0) = z < s(1 + A). Because then, from

5
) = 2, in fact, the pair of (12.5) and z = s provide

I.et us observe also that

WG+ 7 <t>%+,0t BN R
+/#% (5) — (1 — p))dM(s) (12.6)

+T+A}?Hx@%@+R@Y®%®HW®JEWT]

(s)

is a P—local martingale, for any (Zo(-), Z1(:)) € D and any trading strategy
(L, M); this follows directly from (11.5), (11.6), (12.3) and the product rule.
Equivalently, (12.6) can be re-written as

KO+ BOVE) | 040 By (B

BlI) BK) Bls)
—T+%+A£%%ﬁ@@%@m%@, (12.7)
where ,
mﬁyzwwféawmﬁogth (12.8)

is a Brownian motion under the equivalent probability measure
Po(A) := E[7Z5(T)14], A€ Fr. (12.9)

We shall denote by 7Z3(-), Wy (-) and P, the processes and probability
measure, respectively, corresponding to the process 05(-) of (12.5), via the
equations (12.3) (with Z5(0) = 1), (12.8) and (12.9). With this notation,
(12.2) becomes dP(t) = P(t)o(t)dW{(t), P(0) = s.
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Definition 12.1 Let D, be the class of positive martingales (Zo(+), 71 (+)) €

D, for which the random variable

Zo(T) Z4(T)
” , and thus also ——
7(T) Z:(TYP(T)

is essentially bounded.

Definition 12.2 We say that a given trading strategy (L, M) is admissible
for (z,y), and write (L, M) € A(x,y), if

X+ BOY()
B()

Consider, for example, a trading strategy (1, M) that satisfies the no-bankruptcy

is a Po —supermartingale, V (7o(+), 71(+)) € D (12.10)

conditions
XH+04+X0YH)>0 and X+ (1 —p)Y() >0, VO<it<T.

Then X(:) + R(-)Y(-) > 0 for every (Zo(-), 7Z1(:)) € D (recall (12.1), and
note Remark 12.2 below); this means that the Po—local martingale of (12.7)

is nonnegative, hence a Pg—supermartingale. But the second and the third

14X R(s) R(s) (1~ p)
A TP RO AT AU

terms

X()+ROY()

in (12.7) are increasing processes, thus the first term B0

Pqo—supermartingale, for every pair (Zo(-), Z1(-)) in D. The condition (12.10)

is also a

is actually weaker, in that it requires this property only for pairs in D,. This
provides a motivation for Definition 12.2, namely, to allow for as wide a class
of trading strategies as possible, and still exclude arbitrage opportunities. This
is usually done by imposing a lower bound on the wealth process; however,
that excludes simple strategies of the form “trade only once, by buying a
fixed number of shares of the stock at a specified time 1”7, which may require

(unbounded) borrowing. We will need to use such strategies in the sequel.
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Remark 12.2 Here is a trivial (but useful) observation: if = 4+ (1 — u)y >
a+ (1 —wband 24+ (1 4+ XNy > a+ (1 +X)b, then 2+ ry > a + rb,
VIi—pu<r<14+A

13 The minimal superreplication price

Suppose that we are given an initial holding y € R in the stock, and want
to hedge a given contingent claim (Cy, Cy) with strategies which are admis-
sible (in the sense of Definitions 11.1, 12.1. What is the smallest amount of
holdings in the bank

hCo,Cysy) :=inf{z e R/ A(L, M) € A(x,y) and (L, M) hedges (Co, Cy)}
(13.1)
that allows to do this? We call h(Co, C1;y) the superreplication price of the
contingent claim (Co, C7) for initial holding y in the stock, and with the
convention that h(Cy, Ch;y) = oo if the set in (13.1) is empty.
Suppose this is not the case, and let @ € R belong to the set of (13.1);
then for any (7o(+), Z1(+)) € D, we have from (12.10), the Definition 11.1 of
hedging, and Remark 12.2:

fl?-l-gEZ](T) = ;,;_|_g22]4j0 [X(T)_l'R(T)Y(T)]

5 B(T)
so that = > I | 2L (Co + R(T)Ch) — L7,(T)|. Therefore
W(Co, Criy) > sup P l@”g;(a} + R(T)Cy) — %21 (T)] : (13.2)

and this inequality is clearly also valid if h(Co, C1;y) = oo.
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Lemma 13.1 [f the contingent claim (Co, C1) is bounded from below, in the

SEenNse

Cot(14+X)Cy > — K and Co+(1—pu)Cy > — K, for some0 < K < oo (13.3)

then
Zo(T
sup 7 ;&3«%+JWDCQ - %z(m
Zo(T
_ %mﬂ;&%%+wam%zwy

Proof: Start with arbitrary (Zo(-), Z1(+)) € D and define the sequence of
stopping times {7, } 1T by

Zo(t
7, = inf{t € [0,T] / 72271; >n}t AT, nelN.
/0 4

Consider also, for 7 = 0,1 and in the notation of (12.5):

0 (1) = { Oi(t), 0<t<m, }

! 0x(t), 7, <t<T

and
Zi(n)(t) =z exp{./o/ 97(;”')(5)dW(S) — ;./0/(97(:”1)(5»2&9}

with zo = 1, z; = 7;(0) = EZ(T). Then, for every n € IN, both Z(()n)(-) and
2"
7 (VP()

in [1 =, 1+ A] (by (12.1) and Remark 12.1), and Z(()”)()/Zg() is bounded
by n (in fact, constant on [7,,7T]). Therefore, (Zé”‘)(-),zf”)(-)) € D.,. Now
let s denote an upper bound on K/B(T), and observe, from Remark 12.2,
(13.3) and Fatou’s lemma:

an)(-) are positive martingales, R (-) = = R(- A 7,) takes values

Zo(T)
B(T)

E[ (%+Rwym%zwﬂ+%z@+ﬁ
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IA

U%+H“WKW%ﬂ“Wﬂ+%Zme~

This shows that the left-hand-side dominates the right-hand-side in the state-
ment of the lemma; the reverse inequality is obvious. o

Remark: Formally taking y = 0 in the above, we deduce

o (St BN g o (Gt BODCY —gy)
B(T) = B(T) 7

where Fj, E(()n) denote expectations with respect to the probability measures
Pq of (12.9) and P(()n)(-) = E[Z(()”')(T)I.L respectively.

Here is the main result of this section.
Theorem 13.1 Under the conditions (13.3) and
ES(C(?—I—C]Q) < 00, (13.5)

we have

Zo(T)
B(T)

In (13.5), F; denotes expectation with respect to the probability measure
Pg. The conditions (13.3), (13.5) are both easily verified for a Furopean
call or put. 1In fact, one can show that if a pair of admissible terminal
holdings (X(7T),Y(T)) hedges a pair ((:Ym (:H) satisfying (13.5) (for example,
(Co, C1) = (0,0)), then necessarily the pair (X(7),Y(T)) also satisfies (13.5)

and so does any other pair of random variables (Cy, (1) which are bounded
from below and are hedged by (X(7),Y(T)). In particular, any strategy
which satisfies the “no-bankruptcy” condition of hedging (0,0), necessarily

h(Co, Criy) = sup B (%+wamf%zw).
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results in a square-integrable final wealth. In this sense, the condition (13.5)
is consistent with the standard “no-bankruptcy” condition, hence not very
restrictive (this, however, is not necessarily the case if there are no transaction
costs).

Proof: In view of Lemma 13.1 and the inequality (13.2), it suffices to show

Co Ch Yy
h(Co,Criy) <sup K | Zo(T)—— + 7, (T — =] =: R. 13.
(ConCrin) < | (T ) (o= )| = e

For simplicity we take s = 1, r(-) = 0, thus B(-) = 1, for the remainder of
the section; the reader will verify easily that this entails no loss of generality.

We start by taking an arbitrary b < h(Co, C1;y) and considering the sets

Ay = {(U,V) e (L3)?:3(L, M) € A(0,0) that hedges (I/, V) starting with
r=0,y =0} (13.7)

Ay = {(Co —b,Cy —yS(T))},

where L; = Ly(2, Fr, Pj). Tt is not hard to prove (see below) that
Ag is a convex cone, and contains the origin (0,0), in (L)%, (13.8)

It is, however, considerably harder to establish that

Ag is closed in (L3). (13.10)

The proof can be found in the appendix of Cvitani¢ & Karatzas (1996). From
(13.8)-(13.10) and the Hahn-Banach theorem there exists a pair of random
variables (pg, p7) € (L3)?, not equal to (0,0), such that

FilosVo+ piVil = ElpaVo + p V] <0, ¥ (o, Vi) € Ay (I13.11)

Eslpo(Co—b)+p7(Cr—yS(T))] = Elpo(Co—b)+p1 (C1—yS(T))] = 0, (13.12)



where p; := pZ5(T), 1 = 0,1. Tt is also not hard to check (see below) that

Elp S(T)|F)

<(T+NE[polF],YO<1<T (13.13)

In view of (13.14), we may take F[pg] = 1, and then (13.12) gives

Consider now arbitrary 0 < e < 1, (Zo(-), Z1(-)) € D, and define

Zo(t) := e Zo(t) + (1 — €) Elpo| F, Zi(8) == e Z0(t) + (1 — &) B[ S(T)|F,
for 0 <t < T. Clearly these are positive martingales, and ZO(O) =1; on the
other hand, multiplyingin (13.13) by 1—&,and in (1—u)Z5(t) < Z1(t)/S(t) <
(T4+ M) 7Z(t), 0 <t <T hy e, and adding up, we obtain (Zo(), 7?1()) e D.
Thus, in the notation of (13.6),

R > K [ZO(T)00+771<T> (5*?%) y)]

= (1= Dot (€~ SN+ < | 7T+ (7)o )|

> bl )+ ek [ZO(T)CO + 7Z4(T) (S?‘T) —~ u)]

from (13.15); letting £ | 0 and then b 1 h(Co, C1;y), we obtain (13.6), as
required to complete the proof of Theorem 13.1.

Proof of (13.9): Suppose that AgN Ay is not empty, i.e., that there exists
(L, M) € A(0,0) such that, with X(-) = X®"M(.)and V() = Y®""M(.) the
process X(-) + R(-)Y () is a Pg—supermartingale for every (Zq(-), 71()) €

D, and we have:
X(T)+ (1 = w)Y(T) = (Co = b) + (1 — p)(Ch = yS(T)),
X(T)+ (14 NY(T) > (Co— b+ (1 4+ A — yS(T)).

54



But then, with

X() o= XMV = b4 X(), V() = VI = V() +y5()
we have, from above, that )N(()—I—R()SN/() = X )+RY()+b+yZi (1)) 70(+)
is a Po—supermartingale for every (Zo(-), 71(+)) € Da, and that

X(T) 4 (1 WV(T) > Cot (1 p)C,

X(TY+ (14+0)Y(T) > Co+ (1 + M.

In other words, (1., M) belongs to A(b,y) and hedges (Cy, Cy) starting with
(b,y) a contradiction to the definition (13.1), and to the fact h(Co, Cy;y) >
b.

Proof of (13.13), (13.14): Fix t € [0,T) and let £ be an arbitrary bounded,
nonnegative, JF;—measurable random variable. Consider the strategy of
starting with (2,y) = (0,0) and buying ¢ shares of stock at time s = ¢, oth-
erwise doing nothing (“buy-and-hold strategy”); more explicitly, M¢(-) = 0,

Lf(s) = £5(1)1,m(s) and thus

Ne(s) = XOTEMIC) = —€(1 4+ NS (1)1 m(s),
VE(s) == VOIRSME() = £5(s)15m(s),

for 0 < s < T. Consequently, Zo(s)[X¢(s) + R(s)Y4(s)] = £[7:(s) — (1 +
M)S() Zo($)] 1,7 (s) is a P—supermartingale for every (Zo(-)

since, for instance with t < s < T

ElZo(s)(Xs 4+ RYIF] = E(E[Z(s)|F] — (14 M) SB[ Zo(s) | F))
7 (1) — (T + 0)S(1) Zo(1)] = ES(1) Zo(1)[B(E) — (1 + X))
< 0= Zo()[XE(H) + RHYE()).

Therefore, (L&, M%) € A(0,0), thus (X&(T),Y¢(T)) belongs to the set Aq of
(13.7), and, from (13.11):

0 > ElpoX(T)+p V(T = E[E(p1S(T) — (1 4+ A)peS(1))]
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—  E[E(Elpy S(T)F] — (1 4+ NS0 Elp F)l

From the arbitrariness of £ > 0, we deduce the inequality of the right-hand
side in (13.13), and a dual argument gives the inequality of the left-hand
side, for given ¢ € [0,T'). Now all three processes in (13.13) have continuous
paths; consequently, (13.13) is valid for all t € [0,T].

Next, we notice that (13.13) with ¢ = T implies (1—pu)po < p1 < (14+X)po,
so that pg, hence also p1, is nonnegative. Similarly, (13.13) with £ = 0 implies
(1 — ) Klpo) < E[p1S(T)] < (14 X)E[po], and therefore, since (pg, p1) is not
equal to (0,0), F[po] > 0, hence also FE[p;S(T)] > 0. This proves (13.14).

O

Remark 13.1 For the European call option with y = 0, we have

Zo(T
h(Co, C130) = sup B | Zy(T) 1 pserysiy — kLl{smwf} ;
D B(T)

and therefore, h(Co, C1,0) < supp K[71(T)] = supp Z1(0) < (1 + A)s. The
number (1 4+ A)s corresponds to the cost of the “buy-and-hold strategy”, of
acquiring one share of the stock at £ = 0, and holding on to it until £ = T.
Davis & Clark (1994) conjectured that this hedging strategy is actually the

least expensive superreplication strategy:
h((j()7 0170) = (] + )\)9

The conjecture was proved by Soner, Shreve & Cvitani¢ (1995) by analytic
methods. Moreover, the following analogous result has been obtained in
more general continuous-time models and for more general contingent claims
by Levental & Skorohod (1997) (using probabilistic methods) and Cvitani¢,
Pham & Touzi (1998) (using Theorem 13.1): “the cheapest buy-and-hold
strategy which dominates a given claim in a market with transaction costs is
equal to its least expensive superreplication strategy”. However, the result is

not always true, and, in particular, it does not hold for discrete-time models.



14 Utility maximization under transaction costs

Consider now a small investor who starts with initial capital (2,0), 2 > 0,

and derives utility U(X(T+)) from his terminal wealth

{m+muu<q_

N(T4) 1= XT) 4 V(7)) 2 0, where fn) = ¢ 0

In other words, this agent liquidates at time T' his position in the stock, incurs
the appropriate transaction cost, and collects all the money in the bank-
account. Denote by A*(x) the set of terminal holdings (X (7),Y(T)) that
hedge (0,0), so that, in particular, X(7+4) > 0. The agent’s optimization
problem is to find an admissible pair (ij, M) € A*(x) that mazimizes expected
utility from terminal wealth, i.e., attains the supremum

V(z):= sup KU(X(TH)). (14.1)

A+ ()

Here, U : (0,00) — R is a strictly concave, strictly increasing, continuously

differentiable utility function which satisfies U'(04) = oo, U//(c0) = 0 and

Assumption 14.1 The utility function U(a) has asymptotic elasticity strictly

less than 1, i.e.

— aU'(x)
AEU) = JL}T{T}]O ()

It is shown in Kramkov & Schachermayer (1998) (henceforth [KS98]) that

this condition is basically necessary and sufficient to ensure nice properties

< 1. (14.2)

of value function V(z) and the existence of an optimal solution.
We are again going to consider the dual problem. However, unlike the
case of portfolio constraints, we have to go beyond the set of state-price

densities for the dual problem, and we introduce the set

7
B(T)

H = {Z eL] / E [ (X(TY+ fFOY(T))| <2, ¥ (X(T),Y(T)) € A+(m)}.

(14.3)
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(Here, LY is the set of all random variables on (Q,F,P).) In particular, if

(Zo(T), Z1(T)) € D, then Zo(T) € H. For a given z > 0, the auxiliary dual
problem associated with (14.1) is given hy

V(z) = inf EU(=7/B(T)). (14.4)

More precisely, similarly as in Cvitani¢ & Karatzas (1996) (henceforth [CK96]),
for every z > 0, 7 € H and (X(T),Y(T)) € A*(x) we have

EU(X(T4)) < E[U(zZ)B(T)) + X(T+)7/B(T)] < EU (27 B(T)) + zz.
(14.5)

Consequently, we have

V(z) <inf[V(z) + z2] = inf y(2). (14.6)

>0 z2>0

Remark 14.1 The duality approach used in the market with portfolio con-
straints suggests that we should look for pairs (Z, 7j) € (0,00) x H and

A~

(X(T+),0) € At(x) such the inequalities in (14.5) and (14.6) become equal-

A~

ities. The pair (X(7T+),0) is then optimal for (14.1). Tt is easily seen that

this is the case (namely that those inequalities become equalities) if and only

if

(X(T4),0) = I(:7/B(T)),0) € A*(x), E [21 (;(7;))] = 1.

We first state our results and then provide the proofs.

Proposition 14.1 For every z > 0 there exists 7. € H that attains the
infimum in (14.4).

Proposition 14.2 For every x € (0,00) there exists 2 € (0,00) that attains
the infimum of v(z) in (14.6).

Denote 7 := Z: the optimal solution to (14.4) with z = 2 denoting the
optimal solution to inf.sqv(z) of (14.6). The main result of this section is

the following



Theorem 14.1 The pmfr((jo, 0) := ([(éf/B(T)), 0) belongs to the set A (x)
of (nonnegative) terminal holdings that can be hedged starting with initial

wealth © > 0 in the bank account. Furthermore,

EU’Iéz = V(z) = inf[V(z) + z2] = V(2) + 22
o (am) )| v

In particular, the strategqy that hedges ((}0, 0) is optimal for the utility mazi-

mization problem (14.1).

Remark 14.2 Under Assumption 14.1, there exist zo > 0, 0 < v, < 1 and
(0 < ¢ < oo such that
zl(z) < ]Lf](z) and Ulpz) < ell(z), V0 <z<zg (14.7)
-
see [KS98] Lemma 6.3 and Corollary 6.1 for details.

Proof of Proposition 14.1: We first observe that H is convex, closed
under a.s-convergence by Fatou’s lemma, and bounded in L'(P); the latter
is seen by setting (X(7),Y(T)) = (zB(T),0) in (14.3), implying K[7] < 1
for 7 € H. Fix z > 0 and let {Z,} be a minimizing sequence for (14.4).
By Komlds theorem (see Schwartz 1986), there exists a subsequence 7] such

that

1 .
Ca=1

as k — oo, almost surely. As in Lemma 3.4 of [KS98], Fatou’s lemma is
applicable here, so that liminf,_ E(MJ(ZZ;{) > E(MJ(ZQZ). In conjunction
with convexity of U this easily implies that 7, is optimal for (14.4). ©

For a given progressively measurable process 6(-) introduce the local mar-

tingale

ZW%—mM%%@MﬂQ%KW@M@,O<t<T (14.8)
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In this section we will use the notation 7, := ZQS(T) for the risk-neutral

density for the market without transaction costs, where, as before, 6*(1) :=

(r(t) — b(t))/o(t). We have 7y € H.

Lemma 14.1 Value function V(-) : (0,00) — R is finite, decreasing and

strictly convex.

Proof: Tt is straightforward to check that ‘7() is decreasing and strictly
convex. Next, since r(-) is bounded, we have k=" < B(T) < k for some

k > 0. In conjunction with Jensen’s inequality, we obtain

EU(=7/B(T)) > U(zkE[7]) > U(zk), (14.9)

hence ‘7(2) > (?(Zk) > —o00. On the other hand, Assumption 14.1 ensures
the existence of 0 < o < 1, zy > 0 such that

Ulpz) < po7l(z)  forall 0<p<l1;
see [KS98] Lemma 6.3 for the proof. We get, since 7 € H,

V(z)

IA

EU(27/B(T))
= E[[NJ(ZZO/B(T))l{zZO/B(T)>Z1}] + E[[MJ(ZZO/B(T>>1{270/B(T)SZ1]}

o

< U]+ (2/20)7T|U(z0)] - B [(Zof B(T)FT] < o0.

Proof of Proposition 14.2: We have V(O—I—) = (NJ(O—I—)7 so lim,0y(2) =
(MJ(O—I—) = U(o0). Therefore, if U(oo) = oo, the infimum y(z) on [0, 00) cannot
be attained at z = 0. Suppose now that {/(oco) < oo and that the infimum is
attained at 2 = 0, namely that inf,5qy(z) = U(0+). Then we have

U(0+) — U(=H)

4

x> > K[HI(zH)]

for all H € H and z > 0. Leting z — 0 we get x > oo, a contradiction.

Therefore, either the infimum of v(z) is attained at a (unique) number 2 =
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Zy € (0,00) or it is attained at 2 = oo. If the latter is the case, then there

exists a sequence z, — oo such that for z, large enough and a fixed z < z,,

we have (by (14.9))

v < Vi(z) = V(z,) < Vi(z)— [NJ(an).

Zn — 2 Zn — 2

Letting z, — oo we get x < 0 by de I"'Hospital’s Rule, a contradiction. ¢

Lemma 14.2

~

Vi(2)=-F 4 r(:-2 =

2)=—-F BT ZR(T) = —x.

Proof: Let h(z) := E[U/(z7/B(T))]. Then h(-) is convex, h(-) > V(-) and
h(z) = ‘7(2) These three facts easily imply A7h(2) < A*‘N/(é) < A+‘7(2) <
A*h(2), where AT denotes the left and the right derivatives. Because of this,

it is sufficient to prove the lemma with V replaced by h. Tt is easy to show,

by monotone convergence theorem, that

s o[ 22

On the other hand,

37h03> T 8 st (2 )|

We claim that

Bfm ! (@ —e) B(T)) - BfT) ! (@ ) B(ﬂ) Nzl

bt (o)
BT) \©" BTy <
is uniformly integrable when ¢ is small enough, where zy is the number from

(14.7). Indeed, the first term is dominated by %[ (%20)7 which is uni-

formly integrable when & is sufficiently small since E[%] < k-FE[7] <k

~
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It follows from (14.7) that the second term is dominated by

1 - 7
— T {(z—e) 7
Z—el—xn B(T)
which is in turn dominated by
1 Y
A Ry z7
Z—el—xn B(T)

when ¢ is small. The uniform integrability follows from £

U (Bé(i))‘ < 0.

Therefore, we can use the Mean Convergence Criterion to get the inequal-

ity ) )
7 7
Ah(2)> —F Iz :
B(T) \" B(T)
Together with (14.10) we establish A/(2) = —E[%[(,%LT)] = —x. The

B(
latter equality follows from the fact that 2 attains inf,5o[V(z) + 22]. ©

Lemma 14.3 We have

reh [B(Zﬂ’ (292T>)] - ’[B(%’ (éﬁfm)] o

Proof: For a given 7 € H, e € (0,1), let 7. := (1 — 5)7 +e/Z € H. By
optimality of 7 we get

o () ol e ()

- [(lZ(T;)’(B{T))] B

However, it follows that, as in the proof of Lemma 14.2,

(7?%@?’ (BZF))) 5 B?T) ! (5’“305973)
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is uniformly integrable. We can now use Fatou’s lemma in (14.11), to get

" wa’(m;))] =0

which completes the proof.

Proof of Theorem 14.1: For fixed = > 0 define
€= {£ € 12 [ 2 B(TYE < X(T)+£(Y (), for some (X(T),Y(T)) € A*(x)}.

Denote by
C':={7ell | E[Z{ <1, V¢el)

the polar of set C. Tt is clear then that H = C°. We also want to show
C = H° = C". By the bipolar theorem of Brannath & Schachermayer
(1998), it is sufficient to show that C is convex, solid and closed under a.s.-
convergence (a subset C of L] is solid if f € C and 0 < g < fimply g € C).
It is obvious that C is convex and solid. On the other hand, from Theorem
13.1 we know that & € C if and only if

FEil(€B(T))%] < oo and sup B[Z€ < 1.
ZeEH

This implies (by Fatou’s lemma) that C is closed under a.s-convergence, he-
cause the set {EB(T)}eec is bounded in L*(P). Indeed, the latter follows
from [CK96] (as remarked in Appendix B of that paper, this can be shown
by setting U, = V, = 0 in the arguments of its Appendix A; see (A.8)-
(A.11) on p156). We conclude that C = H". Now, Lemma 14.3 implies
%(BT()T)) € H = C, hence ([(22/B(T)),0) € A*(x). This, in conjunction
with Lemma 14.3 and Remark 14.1, implies the remaining statements of the

theorem.

O

Notice that, if v(-) is deterministic, then Jensen’s inequality gives

et = i)
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> (?(BFT)), (14.12)

for all 7/ € H. We will use this observation to find examples, in which the
optimal strategy (i/, M) never trades.

Example 14.9 Let us assume that r(-) is deterministic. In this case we see
from (14.12) that

V(z) > U(z/B(T),
and the infimum is attained by taking 7 = 1,11 € H. A sufficient condition
for this is (],21(-)) € D for some positive martingale 21() such that 1 —p <
]%’() = Z()/P() <14 A. In particular, one can set 7 (0) = (1 4+ X)s and
21() = 7; (), where :‘51() = o(+), in which case (],Z(-)) € D if and only if

T+
0</ )(]9<]0g§]L Vo<t<T. (14.13)
0

Furthermore,
X(T+)=1(2/B(T)) = «B(T).
This means that the no-trading-strateqy I = 0, M=0is optimal. Condition
(14.13) is satisfied, for instance, if
T+ A

r(-) <b(-) <r(-)+p, forsome 0 <p < ?log]— (14.14)
0

If b(-) = r(-) the result is not surprising even without transaction costs, it
is then optimal not to trade. However, if there are no transaction costs, in
the case b(-) > r(-) the optimal portfolio always invests a positive amount in
the stock; the same is true even in the presence of transaction costs, if one
is maximizing expected discounted utility from consumption over an infinite
time-horizon, and if the market coefficients are constant  see Shreve & Soner
(1994), Theorem 11.6. The situation here, on the finite time-horizon [0, 7],
is quite different: if the excess rate of return b(-) — r(-) is positive but small
relative to the transaction costs, and/or if the time-horizon is small, in the

sense of (14.14), then it is optimal not to trade.
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