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Executive Stock Options with Effort Disutility
and Choice of Volatility

Abstract

We consider the problem of an executive that receives call options as com-
pensation in a dynamic setting. She can influence the stock price return with
her effort. In addition, she determines the level of volatility of the stock through
the choice of projects. The executive is risk-averse and experiences disutility
from the effort. In this framework, we introduce the problem of the company
that wants to maximize the final expected value of the price of the stock minus
the cost of the compensation package. The company has to design a compen-
sation package such that the executive reaches the minimum level of utility or
opportunity cost (individual rationality constraint). We characterize the op-
timal strike price the company should choose, and compute it numerically for
the logarithmic case. When the executive can affect the mean return of the
stock, we find that in the vast majority of cases options should be granted out-
of-the-money. A key parameter in the model is the parameter that measures
the quality of the projects. When this parameter is very high, it is optimal to
grant stock rather than options. We distinguish between “large” companies,
that emphasize the expected value of the stock, and “small” companies, that
are more interested in keeping the cost of the compensation low. We find that
stock is more likely to be the optimal contract for small companies.



1 Introduction

A call option gives its owner the right to buy one share of the underlying stock
at a predetermined price. Options are similar to a leveraged portfolio invested in
the underlying security. For that reason, options have become a main ingredient in
compensation packages with the objective of aligning the interests of the executives
with those of the company stockholders. Hall and Leibman (1998) and Murphy (1999)
report statistics about the number of companies that use stock options as the main
component of the compensation of their executives.

As a result of the increasing importance of stock options as compensation there
has been a surge of interest on this topic in the economics literature. Among the
first references in this area are Lambert, Lanen and Larcker (1989) that argue that
executive stock options induce a reduction in dividend payments, Jensen and Murphy
(1990) that show that the part of the compensation of executives linked to company
performance depends mostly on their holdings of stock and options rather than on
bonuses (more on this topic can be found in Murphy (1993), Hall and Leibman
(1998) and Carpenter (1998)). More recently, Hall and Murphy (2000b) consider the
problem of valuation of executive stock options, Detemple and Sundaresan (1999)
develop a pricing model for options that can be applied to executive options, Hall
and Murphy (2000a) study the problem of choosing the strike price of the options,
Brenner, Sundaram and Yermack (2000) consider the problem of resetting the strike
price and develop a valuation model for resettable options. A strand of the literature
addresses the broader problem of the optimality of stock options versus other contracts
with the manager, e.g. Aseff and Santos (2001). Related work is also Martellini and
Urǒsević (2001) that tries to provide a uniform setting for the valuation of different
compensation schemes. Jin (2000) studies empirically the tradeoff between incentives
and risk, since the executive cannot trade the options.

We take as given that the executive will receive call options as part of her com-
pensation. However, given that assumption, we try to develop a richer framework in
order to address some of the problems mentioned above. In particular, the existent
literature considers the incentives of options in a static framework: that framework
does not seem appropriate to address some of the questions considered in the litera-
ture. One of the potential problems of stock options compensation (see, for instance,
Johnson and Tian (2000a, 2000b)) is the incentive for the executive to increase volatil-
ity, since options values increase with volatility. Johnson and Tian (2000a) compare
different option plans and study the incentive to increase volatility by computing the
vega, the derivative of the option with respect to volatility, of the specific type of op-
tion: a higher vega would indicate a higher incentive for the executive to increase the
volatility of the stock. Similarly, performance incentives are measured by the delta
of the call option, the derivative of the option price with respect to the price of the
underlying: higher delta would imply a higher incentive for the executive to try to
increase the price of the stock (see Hall and Murphy (2000a), for example). Câmara
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(2001) prices a broad range of relative performance based compensation packages,
but he does not consider either the possibility of a choice of effort and/or volatility
from the part of the executive. However, volatility is a dynamic concept and it seems
appropriate to consider problems like these in a dynamic setting. Another element
that is missing in the current literature is the computation of the effort of the execu-
tive and the tradeoff between the effect of the effort on the price of the stock and the
disutility resulting from that effort.

In this paper we construct a dynamic framework that includes those ingredients
and tries to address some of the problems considered in the literature. More specifi-
cally, we study the optimal strike price of executive stock options in a dynamic setting
where the effort of the executive affects the dynamics of the stock. In addition, the
executive can choose among a menu of projects with a tradeoff between expected
return and volatility: projects with higher volatility offer a higher expected return.
The executive receives call options on the stock as compensation. The executive is
risk-averse with respect to the options payoff. Moreover, her effort induces disutility.
The executive will choose effort and volatility so as to maximize expected utility mi-
nus effort disutility. The company cares both about final value of the stock and the
cost of the compensation package, and chooses a strike price of the option to induce
the executive to achieve an optimal mix of effort and volatility. The company has to
grant a number of options at a strike price such that the utility of the executive is
at least as high as a given reservation value (individual rationality constraint). This
paper complements Carpenter (2000), in which, in a dynamic setting, the optimal
choice of volatility is studied, but the agent cannot affect the stock mean return.
Moreover, strike prices are given exogenously in that work.

For an agent that maximizes logarithmic utility from the options, minus the
quadratic disutility from the effort, we compute the optimal level of effort and volatil-
ity in closed form. Based on that, we can compute the optimal strike price to be set
by a company that cares about the expected final price of the stock and cost of the
compensation package. In general, there is a range of possible optimal strike prices,
depending on the parameters of the model. A surprising result in our model, however,
is the fact that the optimal strike price is mostly out of the money. For parameter
values that would induce a choice of a lower strike price, we find that it is usually
optimal to grant stock rather than options. We also find that the strike price should
be higher the higher the type (quality) of the executive. Also, the “size” of the com-
pany seems to have an effect on the optimal strike price. A larger company will award
a more expensive compensation package with more options but with a higher strike
price. A smaller company is more likely to grant stock rather than options. A key
parameter of our model is a measure of the quality of the projects the executive can
choose from. That parameter has a small effect on the optimal strike price level, but,
when it takes sufficiently high values, it has the effect to make optimal a compensation
package formed by stock rather than options. Small companies are more sensitive to
this effect than large companies.
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In our model the executive can affect the mean return of the stock independently
of the volatility. This may be the case in which investors have incomplete information.
With perfect information the mean return of the stock is determined in equilibrium
by the level of systematic risk. In the latter case the executive cannot affect the mean
return independently of the volatility, and we find that in this case it is optimal to
grant stock rather than options.

We also compute the value of the option, both for the risk-neutral company and
for the risk-averse investor. When the parameter that measures the quality of the
projects is high, the ratio of the option value for the company and the option value
for the executive increases. This is consistent with the rest of our conclusions that
indicate that when that parameter is high, it is optimal to grant stock rather than
options.

Finally, we also compute the optimal effort of the executive when cash is a part
of the compensation package, but we are not able to get explicit expressions for the
optimal strike price in this case. Moreover, in the Appendix, we indicate how the
problem can be solved, up to numerical computations, for utility functions other
than the logarithmic utility.

The paper is structured as follows. In section 2 we describe the dynamics of the
stock and the effects of the actions of the executive on those dynamics as well as
the objectives of the two players in our model: the executive and the company. In
section 3 we derive the optimal effort and volatility to be chosen by the executive, as
well as the optimal strike price to be set by the company. In section 4 we perform
some numerical computations and comparative statics. In Section 5 we compute the
option values from the perspectives of both the company and the executive. Section 6
considers the case of additional compensation in cash. We close the paper with some
conclusions.

2 The Setting

We consider the problem of a company that grants stock options to an executive as a
part of her compensation package. The options are given as a performance incentive.
The executive that receives the options is risk-averse. Besides, the decisions of the
executive affect the dynamics of the stock. We consider a dynamic setting. As it will
become clear later, this is the only interesting case. In a static setting, the results
would be trivial and not very interesting.

2.1 Stock Dynamics

Our benchmark stock has a price that follows a geometric Brownian motion process,

dSt
St

= µdt+ σdWt
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with starting value S0. The process W is a standard Brownian motion process and
µ and σ are exogenous constants. However, when the company is managed by the
executive whose problem we address in the next section, the dynamics of the stock
price S is given by

dSt = µStdt+ δutdt+ αvtStdt+ vtStdWt, (1)

where u and v are adapted stochastic processes chosen by the executive, δ ∈ [0,∞)
and α ∈ (0,∞). We shall assume that E[

∫ T
0 |ut|2dt] < ∞ and E[

∫ T
0 |vtSt|2dt] < ∞.

The control u is the level of effort the executive puts in the management of the
company. The higher the u, the higher the expected value of the stock. We will
assume later that the effort produces disutility for the executive. On the other hand,
the choice of v is equivalent to the choice of the volatility of the stock, although it
also has an impact on the expected value. We interpret the choice of v as a choice of
projects. We assume that the executive can choose different projects or strategies that
are characterized by a level of risk and expected return. Since α > 0, the higher the
risk of a project, the higher its expected return. The parameter α is a characteristic
of the type of the company. For example, it may be argued that companies in new
industries will in general be characterized by a large α. One possible interpretation
of α (and, potentially, a way to estimate it empirically) would be the slope of the
equivalent of the “Capital Market Line” resulting from all the projects available to
the company (more about the distinction between firm-specific and market risk can
be found below). On the other hand, δ is a measure of the impact of the effort of
the executive on the value of the company. It can be interpreted as an indicator of
the type (quality) of the executive. Carpenter (2000) studies the optimal choice of v
for the case in which δ = 0. Bolton and Harris (2001) also study a model where the
agent has control of the dynamics of the asset, but for a different purpose.

We emphasize that this is a partial equilibrium setting and we do not compare
the dynamics of the stock of this company with the dynamics of other stocks. If all
the investors had perfect information, the return of the stock would be decided in
equilibrium, and the executive would not be able to influence the drift independently
of the volatility, so that δ would be equal to zero. We consider the case δ = 0 in
section 4 of the paper. A model with positive δ may correspond to the case of partial
information. different An equilibrium model where investors have partial information
on the effect of the actions of different executives on the dynamics of the stocks of
the companies that employ them is beyond the scope of this paper.

Without loss of generality, we will assume that µ = 0. We then re-express equation
(1) as

dSt = δutdt+ αvtStdt+ vtStdWt. (2)

In this paper we only consider one source of uncertainty (a single Brownian motion
process). It would be more realistic to distinguish between idiosyncratic and system-
atic risk. In our setting, we could do that by including in the dynamics of S a second
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Brownian motion process, independent of the first one. The diffusion term of the
stock price dynamics would be of the type vSdW1 + σSdW2. The process W1 would
describe the idiosyncratic risk, while W2 would represent the systematic or market
risk. The executive would choose v, as above, while σ would be exogenous. However,
to make this a complete market setting, we should then allow the executive to trade
in a security that depends on W2. This is realistic, since executives can neither sell
the options nor sell short the stock of their own company, but they are allowed to
trade in other securities. In particular, as shown by Jin (2000), they can diversify the
market risk component of the underlying stock by trading (a portfolio that replicates)
the market index. As Jin (2000) shows, the market risk becomes irrelevant. Hence,
the model we suggest in this paper can be considered a reduced but equivalent form
of the model described in this paragraph, it is tractable, and it considers the relevant
risk component.

2.2 The Executive

In the existing literature, the effort level is not modeled, while volatility is exogenous,
with the exception of Carpenter (2000), Bolton and Harris (2001). In our model,
the executive chooses u and v so as to maximize her utility. The executive is risk-
averse. Besides, she experiences disutility as a result of the effort. The objective of
the executive is

max
u,v

E

[
log

{
n(ST −K)+

}
− 1

2

∫ T

0
u2
tdt

]
(3)

In (3), n is the number of call options the executive receives as a part of her compen-
sation package. The second term of the objective function of the executive represents
the disutility from effort. In the existing literature, the incentives to the executive are
measured by the delta of the option weighted by its price: a higher delta for dollar
spent in options means a stronger incentive for the executive (see, for instance, Hall
and Murphy (2000a)). However, this is not compared to the disutility that arguably
would arise from a higher effort level. That disutility might be, for example, the
result of spending more time working for the company. We assume that the disutility
is an increasing, convex function, with quadratic cost being a convenient choice. The
executive will optimally choose a non-negative level of effort. The other control, v,
involves the choice of projects the company will undertake and has no effect on the
disutility of the executive, since it does not require any effort: the executive has a
menu of projects and decides the level of risk to undertake. The projects are, in
principle, comparable in quality since projects with higher risk also offer a higher
expected return. By allowing the executive to choose the level of volatility we in-
tend to address the problem of potential incentives to increase volatility that options
might trigger, since in a Black and Scholes (1973) setting the price of call options is
increasing with the volatility. We do not introduce a weighting parameter that would
measure the relative importance of the utility from the options package versus the
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disutility from the effort. The reason is that this constant would be equivalent to the
δ that represents the type of the executive: an executive with a high δ is equivalent
to an executive that does not care much about the disutility induced by the effort.

We also point that in this specification the executive only receives compensation
linked to incentives (stock or options). In the last section of the paper we consider
the case in which the executive also receives a cash compensation.

Finally, we emphasize the need to address this problem in a dynamic setting:
for the utility considered here the solution in a static setting would be trivial (zero
volatility) and not very interesting.

2.3 The Company

The company will compensate the executive with stock shares, or call options on the
stock, with maturity T . The company will choose both the number of options n and
the strike price K. A strike price of 0 indicates that the company is giving stock
to the executive. We assume that the company is risk neutral, and cares about the
final value of the stock, as well as about the value of the compensation. On the other
hand, the company has to guarantee that the utility of the executive is at least as large
as a reservation utility R. This can be interpreted as the utility that the executive
would achieve in the best alternative offer she has. This restriction amounts to an
individual rationality constraint, standard in the Principle-Agent problem literature.
Let us define

h(K,n) := λE[ST ]− nE[(ST −K)+] (4)

and

A(R) :=

{
(K,n) ∈ [0,∞)2 : max

u,v
E

[
log

{
n(ST −K)+

}
− 1

2

∫ T

0
u2
tdt

]
≥ R

}
. (5)

The objective of the company is, then,

max
(K,n)∈A(R)

h(K,n). (6)

where λ is an exogenous constant that represents the “size” of the company: a large
value of λ indicates a company that has a large capitalization value and for which
a marginal increase in the value of the stock is very important with respect to the
value of the compensation package. A small λ would indicate that the company
devotes a large proportion of its cash flow to compensation. The objective horizon of
the company matches the objective horizon of the executive and the maturity of the
options. The value R, as we said above, represents the minimum utility the executive
has to be able to achieve through the optimal choice of effort and volatility in order
to work for the company.
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3 Optimal Strategies

Previous papers that study the incentives that stock options represent for executives
have concentrated on the delta and vega of the options (see, for instance, Johnson
and Tian (2000a)). The idea is that when the options have a high delta, their price
is very sensitive to an increase in the value of the stock and, therefore, the executive
has a bigger incentive to try to increase the value of the stock. Similarly, a large
vega indicates high sensitivity of the price of the option with respect to the volatility
of the stock and, therefore, a larger incentive for the executive to increase volatility.
In this paper we study simultaneously the optimal choice of effort and volatility
in a dynamic setting. We point out that given the logarithmic specification of the
compensation part of the utility of the executive, the number of options n will not
affect her optimal effort and volatility choices. We first present the solution of the
problem of the executive for a given strike price. Then we will discuss the optimal
choice of the strike price by the company.

3.1 Optimal Effort and Volatility

We will present the optimal effort û and the optimal choice of volatility v̂ of the
executive. First we introduce the following auxiliary exponential martingale Z,

Zt = exp
{
−1

2
α2t− αWt

}
, (7)

where α is the parameter in (2) that represents the tradeoff between volatility and
expected return of the projects the executive can choose among. Also, consider the
following function of time T̄ ,

T̄t =
eα

2(T−t) − 1

α2
. (8)

Using the previous notation and given the following quadratic equation in z,

δ2T̄0z
2 + (S0 −K)z − 1 = 0, (9)

where δ is the parameter that measures the type of the executive and K is the strike
price of the options, we denote by ž the positive solution of (9):

ž =
1

2δ2T̄0

(
(K − S0) +

√
(K − S0)2 + 4δ2T̄0

)
. (10)

We now find the optimal controls of the executive:

Proposition 1 Consider the problem of the executive described in Section 2.2. Con-
sider also the exponential martingale of (7), ž, the positive number given by (10), and
T̄ , the time function of (8). The optimal effort û of the executive is

ût = δžZt. (11)
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The optimal choice of volatility v̂ is given by

v̂tSt =
α

žZt
+ αžδ2ZtT̄t. (12)

The optimal effort and volatility determine that the price of the stock be given by the
equation

St =
1

žZt
+K − žδ2ZtT̄t. (13)

Proof: See the Appendix. �
We observe that the optimal effort and volatility can also be written as functions

of the price of the stock. That is,

ût =
1

2δ2T̄t

(
(K − St) +

√
(K − St)2 + 4δ2T̄t

)
.

and

v̂tSt =
αδ

ût
+ αδûtT̄t

=
2αδ2T̄t

(K − St) +
√

(K − St)2 + 4δ2T̄t
+
α

2

[
(K − St) +

√
(K − St)2 + 4δ2T̄t

]
.

With respect to the optimal effort, as expected, û is increasing in the strike price
K: as K goes to infinity, the effort goes to infinity, as well. Besides, we note that ž
is decreasing in T , the time to maturity of the option (T̄0 is increasing in T and ž
is decreasing in T̄0). Therefore, the larger the maturity of the option, the lower the
effort of the executive. The intuition is clear: a larger T has a similar effect on the
executive as lowering of the strike price. The effect of δ (the “type” of executive)
depends on whether the option is in-, out-, or at-the-money. When the option is
at-the-money, the optimal effort is independent of δ, as we can see by substituting
(10) in (11). We can also check that when the option is in-the-money the effort is
increasing in δ, and when the option is out-of-the-money the optimal effort decreases
with δ.

Since Z is a martingale, the expected value of the effort at any point in time is,

E[ût] = δž. (14)

With respect to the effect of α, we note that T̄0 is increasing in α and, therefore,
ž is decreasing in α. Expected effort is, then, decreasing in α (everything else con-
stant): the better the menu of projects the executive can choose among, the lower
the expected effort of the executive.

The analysis of the volatility is more complicated. Since T̄T = 0, the second
term of (12) decreases in expected value as we approach maturity, and will tend
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to be negligible relative to the first term. Therefore, for short maturities, optimal
volatility will tend to decrease with higher strike price. For maturities long enough,
the relation will tend to be the opposite. We also see that the volatility is increasing in
the type of executive δ (ž is decreasing in δ, and žδ2 is increasing in δ). The economic
intuition is straightforward: a high-type executive can afford more volatility because
her effort will be more effective to counteract drops in the value of the stock. It is
straightforward to see that the expected value of the volatility at a future date t is

E[v̂tSt] =
α

ž
eα

2t + αžδ2T̄t. (15)

Since T̄t is increasing in α, the expected volatility is increasing in α. In other words,
the higher the expected return-risk tradeoff, the higher the risk the executive will be
willing to undertake.

Some of these comparative statics are illustrated in the results of Table 1 (that
we analyze in detail in the next section). However, in that table the strike price is
always the optimal one, and some of the previous conclusions hold for changes in a
given parameter with constant strike price.

It is also interesting to study the correlation between optimal effort and optimal
volatility. By Ito’s lemma, and equation (12), the dynamics of the optimal volatility
are

d(v̂tSt) = (·)dt+ α2
(

1

žZt
− δ2žZtT̄t

)
dWt. (16)

Equation (11) yields,
dût = (·)dt− αûtdWt. (17)

It is clear that their correlation can be either positive or negative. Considering only
the instantaneous correlation and ignoring the drift terms, we see that for a short
maturity of the option they tend to be negatively correlated, and increases in optimal
effort will be typically associated with decreases of the optimal level of volatility.

3.2 Optimal Strike Price and Number of Options

We assume that the company has full information about the parameters that char-
acterize the dynamics of the stock, as well as the preferences of the executive. The
objective of the company is given by (6). In order to characterize the optimal choice
of K and n for the company, we introduce the function

V (z, n) =
1

z
((λ− n)eα

2T − λ) + λzδ2T̄0 + λS0 . (18)

It will be shown in the Appendix that this is the objective function of the company,
using z = ž and n as arguments. We see that the optimal n is the smallest n that
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we can take, namely the smallest n such that the executive’s rationality constraint is
satisfied. As shown in the Appendix, the executive’s rationality constraint (5) is

1

2
δ2T̄0z

2 + log z − log n− α2

2
T +R = 0 . (19)

From this it follows that the company will take the value of n equal to

n(z) = ze{R−α
2T/2+δ2T̄0z2/2} . (20)

Substituting back in V , we get the objective function of the company as the function
of one argument only:

V (z) =
1

z
λ(eα

2T − 1)− e{R+α2T/2+δ2T̄0z2/2} + λzδ2T̄0 + λS0 . (21)

We now introduce the following values of z:
We define z0 by

z0 =
−S0 +

√
S2

0 + 4δ2T̄0

2δ2T̄0

. (22)

If δ = 0 we define z0 = 1/S0. It is seen from (13) with t = 0 that this value
corresponds to K = 0.

We denote by z = z1, . . . , zk the solutions to the nonlinear equation (if any)

0 = V ′(z) =
λ

z2
(1− eα2T )− zδ2T̄0e

R+α2T/2+δ2T̄0z2/2 + λδ2T̄0 . (23)

In other words, at these values the derivative of the objective function V of (21) is
equal to zero.

We observe that, when δ = 0, V ′(z) ≤ 0. Furthermore, when δ > 0, V ′(∞) = −∞.
Hence, for any δ ≥ 0, V ′(z) cannot be positive for all z ≥ 0.

Recall from (13) that a given value of z corresponds to the value of K given by

K = S0 −
1

z
+ zδ2T̄0 . (24)

Denote by K0 = 0, K1, . . . Kk, the values of K corresponding to z0, z1, . . . , zk.
We now state the result about the optimal strike price and the number of options

for the company.

Proposition 2 Consider the company whose objective is given by (6). The optimal
strike price and number of options are given by K̂ = Kj and n̂ = n(zj) (as determined
from (20)), where V (zj) is the largest of the values V (z0), V (z1), . . . , V (zk). We shall

denote by z̄ the value of z corresponding to K̂.

Proof: See the Appendix. �
We will perform some numerical exercises in the next section. Here we consider

the case δ = 0 for which we can easily obtain the solution.
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Corollary 1 Suppose that the executive cannot affect the drift independently of the
volatility, i.e., δ = 0. Then it is optimal to issue stocks, i.e.,

K̂ = 0. (25)

Proof: See the Appendix. �

4 Numerical Computations of the Optimal Strike

Price

In the previous section we derived the optimal exercise price for a company that cares
both about the expected final value of the stock and the cost of the compensation
package. As it is shown in Proposition 2, the optimal exercise price will be the better
(according to the objective of the company of (6)) of 0 (the company gives stock) or
the K of equation (24). In order to find the latter, we have to solve for z in equation
(23). In this section we find the optimal z = z̄ numerically, in order to derive some
properties of the optimal strike price. The results are included in Tables 1 and 2.

We study the strike price as a function of the parameters of the model: δ, that
measures the type of the executive (higher δ means a higher type); α, that measures
the quality of the projects the company can undertake (higher α means a better
contribution in expected return for each additional unit of risk); R or reservation
utility of the executive: higher R means that the company will have to compensate
the executive more in order to entice her to work for it; finally, we study the optimal
strike price with respect to λ that we interpret as a proxy for the size of the company:
a larger company will devote a smaller share of its resources to executive compensation
and will be more sensitive to the expected value of the price of the stock. In order
to simplify our analysis, we present two tables. In Table 1 we consider the case of
a “large” company (with high λ) while in Table 2 we focus on the case of a “small”
company (with a low λ). The effect of the time to maturity is obvious, thus we fix it
at T = 5. The initial value of the stock is 100.

The first key observation is that, in general, optimal strike prices are either zero
(stock) or above 100 (out-of-the-money). In a few cases (we report one in Table 2)
the optimal option is barely in-the-money, but as we change slightly the parameters
in the direction that produces a decrease of the optimal strike price, the optimal
contract becomes to grant stock. This result seems to be at odds with the fact that
options are usually granted at-the-money.

With respect to the type of the executive, we observe that the higher the type of
the executive (higher δ), the higher the optimal strike price. A higher type can have
more impact with lower effort and the company can set a higher strike price that will
not violate the individual rationality constraint.

The quality of the projects α has an interesting effect on the optimal compensation
package. Higher α (higher quality) makes it easier for the executive to improve the
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price of the stock and the company can set a higher strike price: the executive will
substitute volatility for effort. However, the executive is risk averse and will be
reluctant to take on higher risk. As a result, for a sufficiently high level of α it will be
optimal for the company to give stock rather than options. This lowers the leverage
of the executive and allows her to take on more risk.

The effect of R, the reservation value for the executive, is obvious and unambigu-
ous: higher reservation value for the executive requires a lower strike price. We find
that it is optimal for the company to lower the strike price rather than give more
options, in order to add the necessary compensation to entice the executive to work
for the company.

All these effects are apparent, both in Table 1 and Table 2. In order to analyze the
effect of changes in λ (size of the company) we compare Table 1 and Table 2. From this
comparison, we see that the larger the company, the higher the strike price and also
the higher the number of options (so as to satisfy the individual rationality constraint).
The larger company cares (relatively) more about the value of the stock than about
the value of the compensation and sets a higher strike price, that will require more
effort from the part of the executive. These results are driven by the sensitivity of the
executive to the strike price. Since options are equivalent to a leveraged position in
the stock, the utility of the executive is greatly affected by changes in the strike price:
as the strike price decreases, so does the delta of the option (the implicit leverage of
the executive) and this has a positive effect (even if we keep the value of the package
constant) on the utility of the executive. However, the company is risk neutral and
only cares about the value of the compensation package. A big company will pay a
very expensive package, but will expect a high effort.

As we mentioned above, an important conclusion of our results is that, in general,
the optimal strike price is out-of-the-money. Our results shed some light on the
debate about whether options should be at-the-money or out-of-the-money (Hall and
Murphy (2000a)). We also recall from our discussion about the dynamics of the
stock of equation (1) that the case δ = 0 could correspond to the situation of perfect
information about the effect of the actions of the executive on the dynamics of the
stock. In that case, from Corollary 1, it will be optimal for the company to grant
stock, rather than options.

5 Options Values

Valuing the option granted to the executive is important for several reasons. First,
very often the company and the executive decide to change the characteristics of the
compensation package. Typically, the executive will surrender her option package
in exchange for another package of options with different characteristics (especially,
different strike price) and same value. In order to do that, the company needs to value
the options (see Brenner, Sundaram and Yermack (2000)). Besides, another way to
consider the incentives to the executive would be an analysis of the comparison of
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the value of the option to the company and to the executive. More explicitly, the
executive of the problem considered in this paper faces incomplete markets as a
result of the fact that she cannot sell the options and cannot trade in the underlying
security. On the other hand, the company does not face the same type of restrictions,
although it is not clear that the company faces complete markets. In this paper, for
tractability reasons, we assume that the company is risk neutral (which is standard
in the literature) and in its objective function we subtract the expected option payoff
under the objective probability measure, rather than the true complete markets value
of the options. There is no obvious way of computing the difference between the
value of the option for the executive and for the company. The approach taken in
the literature with respect to the executive (that we follow here) is to compute the
certainty equivalent: a constant amount of money that would leave the executive
at the same utility level as the option. As for the company, we compute the option
value under the original objective probability measure, consistent with the company’s
objective function. These two numbers will provide us with useful information, since
we are then able to compare these values and asses the appropriateness of using
options for compensation schemes.

We point out that the Black and Scholes (1973) formula is not appropriate for
our setting, for several reasons. First, we have a model with stochastic volatility,
that the Black and Scholes (1973) formula cannot address. Second, and probably
more important from a practical point of view, it is well known that the drift of the
stock process does not appear in the Black and Scholes (1973) formula, since it is an
irrelevant parameter, given the underlying equilibrium. However, that is not the case
in our setting. As it should be clear by now, the strike price induces an optimal effort
level which is key in determining the payoff of the option. Besides, as we argued in
the description of our model, for our setting to be compatible with an equilibrium,
we would need asymmetry of information between the company/executive and the
rest of the investors in the market. This would deviate our setting from Black and
Scholes (1973).

We first define the certainty equivalent (CE) of the executive as the constant
payoff x (“cash”) that, if paid instead of an option with a given strike price, would
leave the executive with the same utility level, everything else (including the effort
level and choice of volatility) equal. The utility of the individual, for the same effort
level and utility choice, will be the same with the options or the amount of cash x.
The rationale is the following: if the company gives the executive a certain amount
of options with a given strike price, the executive will choose an optimal effort and
volatility. Here, we look for the amount of money that, if paid to an executive that
exercises that effort and chooses that volatility (as a result of a contract, not of the
endogenous incentives) would reach the same utility. The exercise is the following,
consider a strike price K and a number of options n that will induce an optimal effort
process û and an optimal volatility process v̂, with the final price of the stock ST .
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The CE of the investor x is determined by

log x = E
[
log(ST −K)+

]
. (26)

We now introduce the main result in the following proposition. We note that, as
throughout the rest of the paper, we have assumed that the interest rate is zero.

Proposition 3 Consider the problem described in section 2. The value of the option
for the company is

E
[
(ST −K)+

]
=
eα

2T

z̄
, (27)

where z̄ is the optimal value of Proposition 2. The value of the option for the executive
(CE), that we denote by x, as described by (26), is,

x =
eα

2 T
2

z̄
(28)

with the same z̄ as above.

Proof: See the Appendix. �
From (27) and (28), the ratio of the value of the option for the company and the

value for the executive is given by eα
2 T

2 . This ratio reinforces our results of Tables
1 and 2. We saw that the optimal strategy of the company is very sensitive to α
the parameter that we interpret as the measure of the quality of the projects. When
this parameter is high enough, we saw in Tables 1 and 2 that it is optimal for the
company to give stock, rather than options. ¿From (27) and (28), we see that when
α is high, the value of the option is considerably higher for the company than for the
executive. This points in the direction of the suboptimality of giving options when α
is very high.

In Table 3 we present some results. Options values are in the last two columns.
C0 represents the value of the option for the company and CE the value of the option
for the executive. Since we are interested in the sensitivity of the option value to
the underlying parameters, we have not chosen the optimal strike price. In fact, we
fix the strike price at K = 120 and move the initial price of the stock (we consider
three possibilities, 100, 110 and 119) in order to analyze the effect of changes to the
parameter values depending on how far out of the money the option is. We only
consider cases in which the option is out of the money since this seems to be the best
choice for the realistic values of the parameters. In order to compute the value z̄ of
(27) we use equation (13) (where, of course, Z0 = 1).

The first observation is the fact that the value of the option is not greatly affected
by α, the quality of the projects of the company. This is somewhat surprising since,
as we argued in the previous section, the optimality of giving options versus stock as
compensation depends heavily on the value of α. On the other hand, the value of
the option is very sensitive to the type of executive, δ. This sensitivity is bigger the
farther out of the money. Finally, the sensitivity of the value of the option to changes
in the value of the stock seems to be larger the higher the type of the executive (δ).
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6 The Case of Additional Cash Compensation

In this section we consider the case in which the executive receives, additionally to
the stock options, some cash compensation. The problem of the executive is,

max
u,v

E

[
log

{
w + n(ST −K)+

}
− 1

2

∫ T

0
u2
tdt

]
(29)

where w > 0 represents some cash compensation independent of the price of the stock
of the company. The rest of the parameters are as in section 2. Carpenter (2000)
considers the problem of optimal volatility for more general utility functions, when
δ = 0.

Alternatively, this case can be interpreted as the situation in which the executive
has some wealth whose value is independent of the price of the stock. The main
difference between this case and the case considered before is the fact that the number
of options received in the compensation package becomes now relevant. The problem
becomes considerably more difficult, but we can still compute numerically the optimal
effort and volatility. We include in this section the main result and some numerical
examples.

We start by considering the auxiliary function g defined by

g(t, y) =
(
K − w

n

)
N(d2(y)) + yN(d1(y)), (30)

where

d1(t, y) :=
log{ yn

cw
}+ 1

2
α2(T − t)

α
√
T − t

, (31)

d2(t, y) :=
log{ yn

cw
} − 1

2
α2(T − t)

α
√
T − t

, (32)

and

N(x) :=
∫ x

−∞

1√
2π

exp

{
−z

2

2

}
dz. (33)

We observe that

∂

∂y
g(t, y) =

(
K − w

n

)
1√
2π

exp
{
−1

2
(d2(t, y))2

}
1

y

1

α
√
T − t

+
1√
2π

exp
{
−1

2
(d1(t, y))2

}
1

α
√
T − t

+N(d1(t, y)).

Let us consider the function f : [1,∞) 7→ R defined by

f(x) = log{x} − 1−
(
nK

w
− 1

)
1

x
.
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We observe that f(1) = −nK
w
< 0, f(∞) = ∞, and f is strictly increasing (indeed,

for every y > 1, f ′(y) = 1
y

+ (nK
w
− 1) 1

y2 > 1/y − 1/y2 > 0). Thus, there exists a

constant c = c(n,K,w) ∈ (1,∞) such that

f(c) = 0 and y > c ⇐⇒ f(y) > 0. (34)

Let z̃ be the solution of the nonlinear equation

S0 = g
(

0,
1

z

)
− zδ2T̄0. (35)

Proposition 4 Consider an executive who wants to solve (29). Consider the stochas-
tic process Z and the function T̄ defined in section 3. Then the optimal effort is given
by

ût = δz̃Zt (36)

and the optimal volatility is given by

v̂tSt = αH̃t
∂

∂y
g(t, H̃t) + αz̃δ2ZtT̄t. (37)

The optimal effort and volatility determine that the price of the stock be given by

St = g(t, H̃t)− z̃δ2ZtT̄t. (38)

Here,

H̃t =
1

z̃Zt
. (39)

Proof: See the Appendix. �
From the discussion above, it is clear that both the optimal effort û and the optimal

volatility v̂ are completely determined by z̃. This has to be found numerically from
equation (35). We present several examples in Table 4. We see that the optimal
effort increases with the number of options granted; it does not change much when
the strike price changes; and it may be decreasing or increasing with respect to the
time to maturity, depending on the number of options granted.

7 Conclusions

We present a model where an executive is granted stock options as compensation. Her
decisions can affect the dynamics of the stock of the company in two ways: through
her effort she can increase the expected return of the stock, but this effort produces
disutility; also, she can choose the level of risk of the stock price. Higher level of
risk will also result into higher expected return. The executive is risk averse. We get
closed form solutions for the optimal effort and volatility level of the individual. The
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company chooses the strike price of the call options. The company cares both about
the expected value of the stock price and about the cost of the compensation package.
However, the company has to guarantee that the compensation package is such that
the utility of the individual exceeds some reservation level. We find that there is a
large range of optimal strike prices, depending on the values of the parameters of the
model, but for most cases, it will be optimal to issue options out-of-the-money. We
find that the optimal strike price is increasing with the type of the executive. Also,
with the size of the company: it is optimal for larger companies to set higher strike
prices.

A key parameter in our model is a measure of the quality of the projects of the
company. We find that, although it does not have an important effect on the optimal
strike price, when the quality of the projects is very high, it is optimal for the company
to grant stock rather than options. Smaller companies are more sensitive to this effect
and, therefore, more likely to grant stock than options.

In order to derive closed form solutions for the optimal policies of the executive
we have to assume that the utility is logarithmic and the only source of wealth of
the executive is the package of options granted as compensation. We use a dynamic
setting because in a static setting, the solution is trivial (the executive chooses zero
volatility) and not very interesting.

We can also extend some of our results to the case in which the executive receives
cash, besides options and we find explicitely the optimal effort strategy. However, a
procedure to derive the optimal strike price in a simple numerical way does not seem
to be feasible. Another possible extension of the present work is to include tax effects
in the model.
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A Appendix: Proofs

A.1 Proof of Proposition 1.

We consider the more general case in which the executive maximizes

max
u,v

E

[
F (ST )−

∫ T

0
G(us)ds

]
,

where

F (s) =
1

γ
[n(s−K)+]γ, G(u) =

u2

2

and γ < 1 is the risk-aversion parameter. The log-utility case F (x) = log(x) corre-
sponds to γ = 0. We approach this problem by familiar duality/martingale tech-
niques, as introduced by Cox and Huang (1989), Karatzas, Lehozky and Shreve
(1987). Consider the dual function

F̃ (z) = max
s≥0

[F (s)− sz].

The maximum is attained at the points of the form

ŝ = ŝ(z, a) =

((
z

nγ

) 1
γ−1

+K

)
1
{( z
nγ

)
1

γ−1> Kγ
1−γ }

+ a1
{( z
nγ

)
1

γ−1 = Kγ
1−γ }

,

where a is either 0 or ( z
nγ

)
1

γ−1 +K. Consider also the dual function

G̃(z) = max
u

[−G(u) + δuz],

where the maximum is attained at

û = û(z) = δz.

Define the stochastic process

Mt = ZtSt − δ
∫ t

0
Zsusds. (40)

where Z is the exponential martingale defined in (7). Applying Ito’s rule, we get

dMt = (vt − α)StZtdWt and M0 = S0. (41)

Obviously, M is a local martingale, but we would like to prove that M is also a
martingale. For that purpose, it is good enough to verify the condition

E

[
sup

0≤t≤T
|Mt|

]
<∞.
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According to the Burkholder-Davis-Gundy inequality (see, for instance, Theorem
3.3.28 of Karatzas and Shreve (1991)), it is enough to check that

E

(∫ T

0
(vt − α)2S2

tZ
2
t dt

)1/2
 <∞.

We observe that, according to Theorem 6.1.6 of Yong and Zhou (1999), E
[
sup0≤t≤T Z

2
t

]
<

∞. Since E[
∫ T

0 |vtSt|2dt] <∞, that theorem applied to equation (1) gives E
[
sup0≤t≤T S

2
t

]
<

∞. Applying Hölder’s inequality (see, for instance, Theorem 4.2 of Chow and Teicher
(1988)) and again the condition E[

∫ T
0 |vtSt|2dt] <∞, we note that

E

(∫ T

0
(vtStZt)

2 dt

)1/2
 ≤ E

( sup
0≤t≤T

Z2
t

∫ T

0
(vtSt)

2 dt

)1/2


= E

( sup
0≤t≤T

Z2
t

)1/2 (∫ T

0
(vtSt)

2 dt

)1/2


≤
(
E

[
sup

0≤t≤T
Z2
t

])1/2 (
E

[∫ T

0
(vtSt)

2 dt

])1/2

< ∞.

This implies that

E

(∫ T

0
((vt − α)StZt)

2 dt

)1/2
 <∞,

and therefore that M is a martingale. Thus,

E[MT ] = S0.

By definitions, we get

E

[
F (ST )−

∫ T

0
G(us)ds

]
≤ E

[
F̃ (zZT ) +

∫ T

0
G̃(zZs)ds

]
+ zE[MT ],

where we can replace E[MT ] by S0. Therefore, the above inequality gives an upper
bound for our maximization problem. The upper bound will be attained if the maxi-
mums are attained, and if E[MT ] = S(0). In other words, the optimal terminal stock
price and the optimal effort û are given by

ST = ŝ(žZT , A) and ût = δžZt, (42)

where A and ž are chosen so that A is any FT measurable random variable taking

only two possible values, 0 and ( žZT
nγ

)
1

γ−1 +K, and so that E[MT ] = S(0).
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For γ = 0, we can choose A ≡ 0, and we see that

ST =
1

žZT
+K.

Using this and the martingale property of M , we get

ZtSt = E

[
1

ž
+KZT − žδ2

∫ T

t
Z2
sds

∣∣∣∣ Ft
]

=
1

ž
+KZt − žδ2Z2

t T̄t, (43)

in the notation of (8). In other words,

St =
1

žZt
+K − žδ2ZtT̄t. (44)

Using Ito’s rule we see that the diffusion term of S is given by

v̂tSt =
α

žZt
+ αžδ2ZtT̄t,

as claimed in (12). We observe that the û and v̂ defined above are adapted stochastic
processes with E[

∫ T
0 |ût|2dt] < ∞ and E[

∫ T
0 |v̂tSt|2dt] < ∞. Finally, the requirement

E[MT ] = S0, obtained by setting t = 0 in (44), gives

S0 =
1

ž
+K − žδ2T̄0. (45)

This is equivalent to (9), and we are done. �

A.2 Proof of Proposition 2

Our first objective is to compute the objective function of the company

h(K,n) := λE[ST ]− nE[(ST −K)+], (46)

and

e = e(n,K) := max
u,v

E

[
log

{
n(ST −K)+

}
− 1

2

∫ T

0
u2
tdt

]
. (47)

It is easily seen that

E[Z2(t)] = eα
2t, E[Z(t)] = 1, E[Z−1(t)] = eα

2t. (48)

Thus, according to equation (13),

E[St] =
1

ž
eα

2t +K − žδ2T̄t .
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We also see that E[(ST − K)+] = eα
2T/ž, and, using (24), we verify that the value

h(K,n) of (46) is equal to the value V (z, n) of (18). Again using (24), we see that,
indeed, the value z0 of (22) corresponds to K = 0. Finally, using û = δžZ and (48),
we can compute

e = log(n/z) +
α2

2
T − 1

2
δ2ž2T̄0 ,

in terms of z and n, and we can check that e(n(z)) = R, with n(z) given in (20).
Now, the company wishes to maximize the function h as a function of K, so that

the strike price is non-negative and the executive’s rationality constraint is satisfied.
Obviously, the function h can only attain a maximum on this interval at K̂ = 0, or
K̂ = Ki, i = 1, . . . , k.

�

A.3 Proof of Corollary 1

In the case δ = 0, the objective function of the company is

V (z) =
1

z
λ(eα

2T − 1)− eR+α2T/2 + λS0 . (49)

This is decreasing in z since eα
2T > 1. Thus, it is optimal to take the smallest possible

z, z = z0, corresponding to K̂ = 0.

�

A.4 Proof of Proposition 3

We introduce the notation

H̄t =
1

z̄Zt

where Z is given by equation (7) and z̄ is defined in Proposition 2. According to (13),

ST = K + H̄T .

Thus,

E
[
(ST −K)+

]
= E[H̄T ] =

1

z̄
E
[

1

ZT

]
=

1

z̄
e−α

2T .

In addition,

E
[
log

{
(ST −K)+

}]
= E [− log{z̄} − logZT ]

= − log z̄ +
1

2
α2T. �
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A.5 Proof of Proposition 4

We want to find û and v̂ that solve the problem

max
u,v

E

[
F (ST )−

∫ T

0
G(us)ds

]
,

where

F (s) = log{w + n(s−K)+} and G(u) =
u2

2
.

Introduce the stochastic process Z satisfying

dZt = −αZtdWt and Z(0) = 1.

Equivalently,

Z(t) = exp

{
−α

2

2
t− αW (t)

}
.

Applying the formula of integration by parts, we see that

ZtSt = S0 +
∫ t

0
Zsδusds+

∫ t

0
SsZs(vs − α)dWs.

Let us consider the stochastic process M defined by

Mt := ZtSt − δ
∫ t

0
Zsusds = S0 +

∫ t

0
SsZs(vs − α)dWs.

Since E[
∫ T

0 u2
sds] <∞ and E[

∫ T
0 v2

sS
2
t ds] <∞, we can repeat the proof of Proposition

1 to verify that M is a martingale. Next, consider the dual function

F̃ (z) = max
s≥0

[F (s)− sz].

The maximum is attained at the points of the form

ŝ = ŝ(z, a) =
(
K + max

(
1

z
− w

n
, 0
))

I{log{w+max(n
z
−w,0)}−zK−max(1−wz

n
,0)>log{w}}

+aI{log{w+max(n
z
−w,0)}−zK−max(1−wz

n
,0)=log{w}}

=
(
K + max

(
1

z
− w

n
, 0
))

I{log{w+nmax( 1
z
−w
n
,0)}−zK−zmax( 1

z
−w
n
,0)>log{w}}

+aI{log{w+nmax( 1
z
−w
n
,0)}−zK−zmax( 1

z
−w
n
,0)=log{w}}

where a is either 0 or K + max
(

1
z
− w

n
, 0
)
. Consider also the dual function

G̃(z) = max
u

[−G(u) + δuz],
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where the maximum is attained at

û = û(z) = δz.

By definitions, we get

E

[
F (ST )−

∫ T

0
G(us)ds

]
≤ E

[
F̃ (zZT ) +

∫ T

0
G̃(zZs)ds

]
+ zE[MT ].

Since M is a martingale, E[M(T )] = S0. Therefore the above inequality gives an
upper bound for our maximization problem. The upper bound will be attained if the
maximums are attained, and if E[MT ] = S(0). In other words, the optimal solution
is given by

ŜT = ŝ(z̃ZT , A) and ût = δz̃Zt,

where A and z̃ are chosen so that A is any FT measurable random variable taking
only two possible values, 0 and K + max

(
1
z
− w

n
, 0
)
, and so that E[MT ] = S(0). The

optimal v̂ is obtained from the martingale representation of

Mt = E[MT |Ft] = E

[
ZT ŜT − δ

∫ T

0
Zsûsds|Ft

]
= S0 +

∫ t

0
(v̂s − α)SsZsdWs.

For the case α > 0 that we are considering, we will set A ≡ 0. Introduce the
stochastic process W̃ defined by

W̃t = Wt + αt.

We observe that W̃ is a Brownian motion under the measure P̃ defined by dP̃ /dP =
ZT . Introduce also the notation

H̃(t) =
1

z̃Zt
and M̃t = St − z̃δ2

∫ t

0
Zsds.

We observe that

H̃(t) =
1

z̃
exp

{
α2

2
t+ αW (t)

}
=

1

z̃
exp

{
−α

2

2
t+ αW̃ (t)

}
.

Thus,
dH̃t = H̃tαdW̃ .

Hence, for every 0 ≤ t ≤ s:

H̃s = H̃t exp
{
−1

2
α2(s− t) + α(W̃s − W̃t)

}
.

We also note that

St − z̃δ2
∫ t

0
Zsds =

∫ t

0
δusds+

∫ t

0
vsSsdW̃s − z̃δ2

∫ t

0
Zsds.
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Thus, the stochastic process M̃ is a P̃−martingale. Hence,

M̃t = Ẽ[M̃T | Ft],

or equivalently

St = Ẽ

[
ŝ(z̃ZT , 0)− z̃δ2

∫ T

t
Zsds | Ft

]
.

We note that for every 0 ≤ t ≤ s:

Zs = exp

{
−α

2

2
s− αW (s)

}
= exp

{
α2

2
s− αW̃ (s)

}
,

so for every 0 ≤ t ≤ s:

Ẽ[Zs| Ft] = Ẽ

[
Zt exp

{
α2

2
(s− t)− α(W̃ (s)− W̃ (t))

}
| Ft

]
= Zt exp

{
α2(s− t)

}
.

Denoting

T̃t =
eα

2(T−t) − 1

α2
,

we obtain
St = Ẽ[ŝ(z̃ZT , 0)| Ft]− z̃δ2ZtT̃t.

Here,

ŝ(z̃ZT , 0) =
(
K + max

(
1

z̃ZT
− w

n
, 0
))

I{log{w+nmax( 1
z̃ZT
−w
n
,0)}−z̃ZTK−z̃ZT max( 1

z̃ZT
−w
n
,0)>log{w}}

=
(
K + max

(
H̃(T )− w

n
, 0
))

I{log{w+nmax(H̃(T )−w
n
,0)}− 1

H̃(T )
K− 1

H̃(T )
max(H̃(T )−w

n
,0)>log{w}}

Thus,

Ẽ[ŝ(z̃ZT , 0)| Ft]

= KP̃

{
log{w + nmax(H̃(T )− w

n
, 0)} − 1

H̃(T )
K − 1

H̃(T )
max(H̃(T )− w

n
, 0) > log{w}| Ft

}

+Ẽ
[
max

(
H̃(T )− w

n
, 0
)
I{log{w+nmax(H̃(T )−w

n
,0)}− 1

H̃(T )
K− 1

H̃(T )
max(H̃(T )−w

n
,0)>log{w}}|Ft

]
.

To continue with the computations, let us consider the function f : [1,∞) 7→ R
defined by

f(x) := log{x} − 1−
(
nK

w
− 1

)
1

x
.

Since nK
w
− 1 > −1, there exists c = c(n,K,w) ∈ (1,∞) such that

f(c) = 0 and y > c⇐⇒ f(y) > 0.
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We note that{
log

{
w + nmax

(
H̃(T )− w

n
, 0
)}
− 1

H̃(T )
K − 1

H̃(T )
max

(
H̃(T )− w

n
, 0
)
> log{w}

}

=

{{
log

{
w + nmax

(
H̃(T )− w

n
, 0
)}
− 1

H̃(T )
K − 1

H̃(T )
max

(
H̃(T )− w

n
, 0
)
> log{w}

}

∩
{
H̃(T )− w

n
> 0

}}
⋃{{

log
{
w + nmax

(
H̃(T )− w

n
, 0
)}
− 1

H̃(T )
K − 1

H̃(T )
max

(
H̃(T )− w

n
, 0
)
> log{w}

}

∩
{
H̃(T )− w

n
≤ 0

}}
=

{{
log

{
w + n

(
H̃(T )− w

n

)}
− 1

H̃(T )
K − 1

H̃(T )

(
H̃(T )− w

n

)
> log{w}

}

∩
{
H̃(T )− w

n
> 0

}}
⋃{{

log{w + n(0)} − 1

H̃(T )
K − 1

H̃(T )
(0) > log{w}

}

∩
{
H̃(T )− w

n
≤ 0

}}
=

{{
log{nH̃(T )} − 1

H̃(T )
K − 1 +

w

nH̃(T )
> log{w}

}
∩
{
H̃(T )− w

n
> 0

}}
⋃{{

log{w} − 1

H̃(T )
K > log{w}

}
∩
{
H̃(T )− w

n
≤ 0

}}

=


log

{
nH̃(T )

w

}
>

nK

w
(
nH̃(T )
w

) + 1− w

nH̃(T )

 ∩
{
H̃(T )− w

n
> 0

}
=

{{
f

(
nH̃(T )

w

)
> 0

}
∩
{
H̃(T )− w

n
> 0

}}

=

{{
nH̃(T )

w
> c

}
∩
{
H̃(T )− w

n
> 0

}}

=
{
H̃(T ) > c

w

n

}
.

Thus,

Ẽ[ŝ(z̃ZT , 0)| Ft] = KP̃
{
H̃T > c

w

n
| Ft

}
+ Ẽ

[(
H̃T −

w

n

)
I{H̃T>cwn }

| Ft
]

= K
∫ ∞

1
α

log{ cw
n

1
H̃t
}+ 1

2
α(T−t)

1√
2π(T − t)

exp

{
−1

2

x2

(T − t)

}
dx
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+
∫ ∞

1
α

log{ cw
n

1
H̃t
}+ 1

2
α(T−t)

(
H̃t exp

{
−1

2
α2(T − t) + αx

}
− w

n

)
1√

2π(T − t)
exp

{
−1

2

x2

(T − t)

}
dx.

To simplify the above equation, let us define the probability measure P̄ by

dP̄

dP̃
= exp

{
αW̃T −

1

2
α2T

}
=
H̃(T )

H̃(0)
.

According to Girsanov’s theorem, the stochastic process W̄ defined by

W̄t = W̃t − αt = Wt

is a standard Brownian motion on (Ω,F , P̄ ). We note that according to Bayes’
formula,

Ẽ
[
H̃T I{H̃T>cwn }

| Ft
]

= exp
{
αW̃t −

1

2
α2t

}
Ē

H̃T
1

exp
{
αW̃T − 1

2
α2T

}I{H̃T>cwn }| Ft


= H̃tĒ
[
I{H̃T>cwn }

| Ft
]

= H̃tP̄
{
H̃T > c

w

n
| Ft

}
= H̃tP̄

{
H̃t exp

{
α(W̄T − W̄t) +

1

2
α2(T − t)

}
> c

w

n
| Ft

}
= H̃tP̄

{
α(W̄T − W̄t) +

1

2
α2(T − t) > log

{
1

H̃t

cw

n

}
| Ft

}
.

Hence,

Ẽ[ŝ(z̃ZT , 0)| Ft] =
(
K − w

n

)
P̃
{
H̃T > c

w

n
| Ft

}
+ Ẽ

[
H̃T I{H̃T>cwn }

| Ft
]

=
(
K − w

n

)
N(d2(t, H̃t)) + H̃tN(d1(t, H̃t)),

where

d1(t, H̃t) :=
log{ H̃tn

cw
}+ 1

2
α2(T − t)

α
√
T − t

d2(t, H̃t) :=
log{ H̃tn

cw
} − 1

2
α2(T − t)

α
√
T − t

,

and

N(x) :=
∫ x

−∞

1√
2π

exp

{
−z

2

2

}
dz.
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This means that we can write

Ẽ[ŝ(z̃ZT , 0)| Ft] = g(t, H̃t),

where the function g is defined by

g(t, y) := K
∫ ∞

1
α

log{ cw
n

1
y
}+ 1

2
α(T−t)

1√
2π(T − t)

exp

{
−1

2

x2

(T − t)

}
dx

+
∫ ∞

1
α

log{ cw
n

1
y
}+ 1

2
α(T−t)

(
y exp{−1

2
α2(T − t) + αx} − w

n

)
1√

2π(T − t)
exp

{
−1

2

x2

(T − t)

}
dx

=
(
K − w

n

)
N(d2(t, y)) + yN(d1(t, y)).

Thus,
St = g(t, H̃t)− z̃δ2ZtT̄t. (50)

If we take t = 0 in the above equation, we get

S0 = g(0, H̃0)− z̃δ2Z0T̄0 = g
(

0,
1

z̃

)
− z̃δ2T̄0. (51)

Although this does not give an explicit solution for z̃, it is possible to obtain it
numerically. Applying Ito’s formula in (50), and comparing equations (2) and (50),
we obtain

v̂tSt = αH̃t
∂

∂y
g(t, H̃t) + αz̃δ2ZtT̄t. (52)

Here,

∂

∂y
g(t, y) =

(
K − w

n

)
1√
2π

exp
{
−1

2
(d2(t, y))2

}
1

y

1

α
√
T − t

+
1√
2π

exp
{
−1

2
(d1(t, y))2

}
1

α
√
T − t

+N(d1(t, y)).

We observe that the û and v̂ defined above are adapted stochastic processes with
E[
∫ T

0 |ût|2dt] < ∞ and E[
∫ T

0 |v̂tSt|2dt] < ∞. Therefore, if w > 0 and α > 0, the
optimal drift ût = δz̃Zt and optimal volatility v̂t are given by equations (51)-(52).
�
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Table 1:
Optimal Strike Price

for a “Large” Company

S0 = 100; T = 5; λ = 1000

α δ R K̂ n̂
0.03 1 1 106.758 995.1
0.03 1 2 106.053 995.02
0.03 1 5 103.377 994.395
0.03 2 1 114.425 995.145
0.03 2 2 113.096 995.081
0.03 2 5 108.205 994.641
0.03 5 1 138.891 995.189
0.03 5 2 135.793 995.14
0.03 5 5 124.730 994.843
0.1 1 1 106.825 946.793
0.1 1 2 106.825 945.912
0.1 1 5 0 1.447
0.1 2 1 114.571 947.255
0.1 2 2 113.224 946.554
0.1 2 5 108.259 941.724
0.1 5 1 139.294 947.739
0.1 5 2 136.155 947.204
0.1 5 5 124.934 943.952
0.2 1 1 0 0.0246
0.2 1 2 0 0.0668
0.2 1 5 0 1.343
0.2 2 1 0 0.0246
0.2 2 2 0 0.0668
0.2 2 5 0 1.341
0.2 5 1 140.673 805.674
0.2 5 2 137.393 803.652
0.2 5 5 125.619 791.23
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Table 2:
Optimal Strike Price

for a “Small” Company

S0 = 100; T = 5; λ = 100

α δ R K̂ n̂
0.03 1 1 105.022 99.486
0.03 1 2 104.107 99.464
0.03 1 5 99.779 99.056
0.03 2 1 111.178 99.496
0.03 2 2 109.509 99.48
0.03 2 5 102.348 99.284
0.03 5 1 131.380 99.505
0.03 5 2 127.614 99.495
0.03 5 5 112.713 99.399
0.1 1 1 0 0.0265
0.1 1 2 0 0.072
0.1 1 5 0 1.447
0.1 2 1 111.279 94.519
0.1 2 2 109.584 94.351
0.1 2 5 0 1.446
0.1 5 1 131.682 94.622
0.1 5 2 127.862 94.508
0.1 5 5 112.676 93.447
0.2 1 1 0 0.0246
0.2 1 2 0 0.0668
0.2 1 5 0 1.3425
0.2 2 1 0 0.0246
0.2 2 2 0 0.0668
0.2 2 5 0 1.3414
0.2 5 1 132.712 79.99
0.2 5 2 128.702 79.557
0.2 5 5 0 75.301
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Table 3:
Option Price

K = 120; T = 5
S0 α δ C0 CE
100 0.03 1 0.2486 0.2481
100 0.03 2 0.9608 0.9587
100 0.1 1 0.2661 0.2596
100 0.1 2 1.0278 1.0024
100 0.2 1 0.3335 0.3017
100 0.2 2 1.2846 1.1623
110 0.03 1 0.4804 0.4793
110 0.03 2 1.7193 1.7154
110 0.1 1 0.5139 0.5012
110 0.1 2 1.8355 1.7902
110 0.2 1 0.6423 0.5812
110 0.2 2 2.2790 2.0621
119 0.03 1 1.8019 1.7978
119 0.03 2 4.0231 4.0140
119 0.1 1 1.9121 1.8649
119 0.1 2 4.2641 4.1588
119 0.2 1 2.3270 2.1056
119 0.2 2 5.1688 4.6769
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Table 4: Optimal Effort
when w > 0

S0 = 100, w = 50
δ = 0.5, α = 0.5

n K T z̃
1 90 1 0.0062743
5 90 1 0.0114899
1 90 5 0.0071296
5 90 5 0.0106822
1 100 1 0.0061745
5 100 1 0.0113005
1 100 5 0.0071088
5 100 5 0.0106929
1 110 1 0.0060784
5 110 1 0.0111076
1 110 5 0.0070867
5 110 5 0.0106937
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