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1 Introduction

Modeling of correlation between default probabilities of multiple “names” (individuals,
firms, countries, etc.) has been one of the central issues in the theory and applications
of managing and pricing credit risk in the last several years. There have been dozens of
models in the literature. While each of these models has its own advantages and disadvan-
tages, lax use of such models in practice could in part affect the understanding of the risk
of the credit default and consequently contribute to the extent of a potential crisis in the
market.

In this paper we propose a “bottom-up” model for correlated defaults within the stan-
dard “reduced form” framework. In particular, we assume that in a large collection of
defaultable entities, the intensity of each individual default depends on factors specific to
the individual entity, and on a common factor. The main novelty of our model is that we
further allow a part of the common factor to have a self-exciting nature, reflecting the gen-
eral “health” of the market. More precisely, we assume that the self-exciting factor takes
the form of an “average loss process”, including the average number of defaults to-date as a
special case. The self-exciting feature allows us, in the limiting case, to analyze the impact
of such a “general health” index on the individual entities. However, it also generates a
circular feedback phenomenon that is technically non-trivial.

The self-exciting structure of our model can be thought of as an example of the so-called
“contagion” feature, which has been investigated by many authors using various approaches.
These include Jarrow and Yu (2001), Davis and Lo (2001), Collin-Dufresne, Goldstein and
Helwege (2003), Collin-Dufresne, Goldstein and Hugonnier (2004), Dembo, Deuschel and
Duffie (2004), Giesecke and Goldberg (2004), Giesecke and Weber (2005) and (2006), Frey
and Backhaus (2006) and (2007), Horst (2007), Yu (2007), and Dai Pra, Runggaldier,
Sartori and Tolotti (2009). None of these models contains the circular nature presented in
our model. In a recent work, Giesecke, Spiliopoulos and Sowers (2010) consider a model
similar to ours. However, they impose a more special structure, which enables them to
obtain large deviation type results, in addition to the Law of Large Numbers type results
that we focus on. Self-exciting feature is also present in Filipovic, Overback and Schmidt
(2011), in a "top-down” model. For an overview of standard default risk models, one can
consult, among many others, the texts Duffie and Singleton (2003), Lando (2004), and Frey,
Mc Neil and Embrecths (2005), and the references cited therein.

Assuming that all the factors are diffusion processes, we first show that the proposed

self-exciting model is well-posed. Our next main objective is to identify conditions under



which the average number of defaults (or more generally the average default loss), has a
limit, in the sense of the Law of Large Numbers, as the number of names tends to infinity.
Under such conditions, we show that for the average number of defaults the limiting process
solves an ordinary differential equation, while for the average loss the limiting process solves
a more general and complex equation. It is worth remarking that these results, being of
asymptotic nature, are not directly applicable to individual credit risk derivatives, because
they require a large number of names to be involved in the limiting process. However, our
results should be useful for the risk management at a level of an institution, or a country,
with large portfolio of defaultable claims, when the aim is to analyze potential total losses.
For example, it has been stated that the next crisis might come from potentially numerous
defaults of credit card holders. This paper provides a theoretical model which may prove
useful for addressing such issues.

The rest of the paper is organized as follows. In Section 2 we formulate the problem
and the model. In Section 3 we show that the self-exciting model that we are proposing
is well-posed. In Section 4 we study the fixed point problem that determines the limiting
process. In Section 5 we present some potential applications where the fixed point problem
could be solved. Finally, Sections 6 and 7 are devoted to the main theorem involving the

Law of Large Numbers and its proof.

2 Problem Formulation

2.1 Average loss in correlated default models

We consider n “names”, which could be individual investors, financial firms, loans, etc. We
denote their default times by 7, -+ ,7,. Let us associate to each default time 7; a “loss
process” L%, t > 0, so that the loss due to default at any time ¢ is given by Liil (ri<ty- We

define the “average loss” of all defaults at time ¢ by

NN R
Ly=L} =~ > L 1< (2.1)
i=1
Clearly, one can have various interpretations for L by imposing various choices for L!. For
example, if we set L' = 1, then L is the average number of defaults (for example, the average
number of foreclosures in a given region).

Our main purpose is to investigate the limiting behavior of L™ as n — oo, namely,

L; = lim L7, (2.2)



whenever the limit exists, and to characterize the limit L*. It is to be expected that L* will
depend substantially on the correlation of the default times and the loss processes. The

following two examples are the extreme cases, whose limits are quite different in nature:

1° Assume that the sequence {(7, L} )}n>1 is i.i.d. Then, the Law of Large Numbers
(LLN) implies that L} — L} = E{L} 1{;, <}, P-a.s.

2° Assume that the times and the losses are fully correlated, that is, 71 = --- = 7, = 7,
L% =...=LY = L;. Then, Ly =L = L1lr<py.
In this paper, we will provide quite a general model such that the default times 7y,--- , 7,

are correlated and the limit L* exists. The main,”self-exciting” feature of the model is that

the correlation of 7, - - , 7, is built via the average loss L".

2.2 The model

Throughout this paper we fix an underlying probability space (2, F,P), endowed with a
filtration F 2 {Fi}+>0. We assume that the probability space is rich enough to support a
sequence of independent standard Brownian motions (B%, B!,---  B",---) and a sequence
of exponential random variables (E!,---  E™ ...), all with rate 1 and are independent of

the Brownian motions. We define the following sub-filtrations of F:
OSBRI ESRBOE 19 (2.3)

the filtrations generated by the Brownian motions B and (B, B?), respectively, and aug-
mented by the P-null sets. For simplicity, let us assume that F = \/72; (IF’ Y O'(Ei)>.

We now fix n and the loss processes L', i = 1,---,n. As in reduced form models,
see, e.g., Bielecki and Rutkowski (2002), Duffie and Singleton (2003), Jeanblanc, Yor and
Chesney (2009), we define

Tiéinf{tzo;yg‘in}, (2.4)

where, for process L defined by (2.1), process Y denotes the “hazard process”
Y} = / Ai(s, BS, Bly, X0, X1, Ly)ds, (2.5)
0
and X0 X* i=1,2,--- are factor processes defined by
t ¢
X = g +/ bo(s, BY, X0, Ls)ds + / oo(s, B, X2, L,)dBY,
0 0
t t
X! =z +/ bi(s,B% ., B, X0 X! L,)ds +/ oi(s, B%,, Bt ,, X° X! L,)dB:.
0 0

Throughout the paper, we assume the following Standing Assumptions:



Assumption 2.1 For each i, the process L' is Fi-adapted; the coefficients by, oo : Ry x
CRy,R) xR x Ry +— R and b;, 04, A : Ry x C(Ry,R)?2 x R2 x Ry + R are Lebesgue

measurable functions; and A\; > 0.

We note that here X° denotes the common factor in the market, that is observable by
everyone; X' is the firm i’s specific factor, observable only by firm i. It is possible that each
individual firm has risk factors that are observable by others in the market, and we include
such factors into the common factor X©. It is clear that each 7; is an F-stopping time, but
not necessarily an Fi-stopping time. As pointed above, the main feature of our model is
that the correlation among the defaults depends on, in addition to the common exogenous
factor X, the past defaults through the process L, so that it has a self-exciting nature.
Moreover, since we model each 7; rather than L directly, our model is “bottom-up”.

When there is no confusion, for ¢» = b,o, A and ¢ = 1,2,---, with a slight abuse of

notation we denote

’(/JO(t,.Z'0,0é) = ¢0<t7w71’0704) = wO(tu Bg\t(w)ax()ua)a

| (2.7)
¢i(t,$07$iaa) = ’Qbi(t,W,fEO,Ii,Oé) = ¢i(t7B-O/\t(w)7B-’L/\t(w)ax(hxiua)-

Then clearly (-, 2o, ) is F0-adapted and ;(-, zg, x;, ) is Fi-adapted.

Remark 2.2 (i) If by, 0, b;, 4, A; do not depend on L, then our model becomes a standard
reduced form model where the defaults are conditionally independent, conditional on the
common factor XY, and it is straightforward to check that in this case ); is the Fi-intensity
of 7;, in the sense that P{r; > t|F} = exp{— fg Ni(s, X0, XV)ds}, t > 0; see, e.g., Bielecki
and Rutkowski (2002), Duffie and Singleton (2003).

(i) In the general case when \; depends on L, )\; is obviously no longer an Fi-adapted
process (hence cannot be an “F-intensity” of 7; in the aforementioned sense). Due to the
self-exciting nature of our model, A’ can be interpreted as the conditional intensity of 7¢,
conditional on all the past defaults. See Proposition 3.3 for a more precise statement; see
also Jeanblanc and Song (2011a,b) for more on construction of default times with given

intensities. n

2.3 The main results

Notice that the system (2.1), (2.4)-(2.6) is “circular”, and thus its well-posedness is by no
means obvious. Our first result, Theorem 3.2 below, is that this system is indeed well-posed.
We next characterize the limit process L* via a fixed point problem. We first conjecture

that, if exists, L* should be FY-adapted. Now, for an F'-adapted process a, by replacing L



with « in the system (2.1), (2.4)—(2.6) we define
t t
X,?’a = X9 +/ bO(Sng’aaQS)dS"i‘/ 00(57X27a7048)dB25
0 0
A ¢ 4 ¢ , .
X :xi—i-/ bz-(s,XS’“,Xé’”‘,as)der/ ai(s, X%, X%, ai)d By,
0 0
Yy, = / Ai(s, X0 X0 a,)ds, (2.8)
0
Tl.aéinf{tZO:i/ti’aZEi}, 1=1,---,n;
A Al
LpsLme=— z; Lial{zacs)-
i—

Clearly, given the information FY, processes (X%, Yi’o‘,qu),i =1,---,n, are conditionally

independent; see Remark 2.2. Thus, under conditional probability P{ - |F°}, the standard

Law of Large Numbers should imply, modulo some technical conditions, that
LYY —E{L}*|FYy -0, t>0. (2.9)

Now if L* = a, that is L™ — «, one expects that the system (2.1), (2.4)—(2.6) converges to
the system (2.8) in certain sense. In particular, L™ and L™ should have the same limit,

that is, we should expect that the process a would have the following “fixed point” property:
o = lim E{L*|F}, t>0, (2.10)
n—oo

provided that the limit and the fixed point « both exist.

In Theorem 4.9 below, we will provide some sufficient conditions so that the fixed point
problem (2.10) has a solution. Our main result of the paper, Theorem 2.11 below, proves
the Law of Large Numbers in our model. That is, it shows that if « solves the fixed point

problem (2.10), then under certain technical conditions, we have
lim E{|L} — |} =0, Vt. (2.11)
n—o0

We finish this section by presenting a simple example in which L is the average number

of defaults.

Example 2.3 Assume L =1, \; = A, Vi, and ) is independent of X? (i.e., a “zero-factor”
scenario). Then, conditioning on the values of X, all 72’s have the same (exponential)

distribution and the right-hand side in (2.10) is equal to

P{rf“ < t\f?} =1 eV =1 e A XTan)ds,

6



and the equation (2.10) for a becomes

ap=1—e" fof )\(S,Xg’a,as)ds.

A simple calculation implies that a should satisfy the following ODE:

ap = (1= a)A\(t, X7, en), ag=0. (2.12)

3 Well-posedness

In this section we verify that the system (2.1), (2.4)—(2.6) is indeed well-defined. In other
words, we show that, for each n € N, there exists a unique solution (X°, {X*, Y} ) that

satisfies (2.1), (2.4)—(2.6). For this purpose we impose the following technical conditions.

Assumption 3.1 (i) The mappings xo — bo(t,w, xg, ), 00(t,w, xo, ) are uniformly Lip-
schitz, uniformly in (t,w,a); and the mappings x; — b;(t,w, xo,x;, @) and o(t,w,xg, i, )
are uniformly Lipschitz, uniformly in (t,w, zg, @).

(ii) Let Dy C R denote domain of L', that is, L' takes values in Doy. There erists a

constant K > 0 such that, for any o € Dy, anyi=1,--- ,n, and any (t,w,xo,x;),
’bi(t7w7x0707 Oé) - bi(tawuoaova” + ’Ui(tuwaxoaoaa) - Ui(tvwvovovaﬂ < K(l + |I‘0’),
[Ai(t, w, 2o, 3, ) — Ai(t,w, 0,0, )| < K(1+ |zo] + [24]);

T
]E{/ sup [|b0|2+]ao|2+|bi|2~|—|oi]2+\)\iq (t,0,0,a)dt} < .
0 a€eDy

We then have the following theorem.

Theorem 3.2 Assume Assumptions 2.1 and 3.1 hold. Then for each n € N, the system
(2.1), (2.4)-(2.6) admits a unique F-adapted solution (X°, {X*,Y*}™ ).

Proof. In this proof and in the sequel we denote by 7 < --- < 77 the order statistics of
stopping times 7, ,7,. We construct a solution to the system in the following. It can
be seen from the construction that the solution is unique.

Notice that, if there is a solution, one must have L; = 0 for t < 71 . We thus first

consider the following system:

t t
X =+ [ ol X0 0)ds + [ (s, X0, 0)dB
0 0
R L R
0 0

7



This SDE obviously has a unique solution (X%, {X%!}% ) under Assumptions 2.1 and 3.1.
We can then define

t
i1 A ; A ; i .
vl :/ Ai(s, XOU, X051 0)ds, 712 mf{t >0:Y" > E} i=1,-n;
0 n
=n1 A 1 .
L? == ; Z Li_il 1{7_1_1 St}
i=1
Suppose that we have defined processes (X**, XF yik [nF) and stopping times 7F
fori=1,---,n. Now for k + 1, recalling that T:’* is the k-th order statistic of 7f,--- 7%,
we define fori =1,--- ,n
0,k+1 ik+1 yrik4+1 Fnk+ly D 0,k ~-ik v i,k Fnk k,*
(Xt ’th 7Y;£Z 7L? )*(Xt 7th 7Y’tZ 7L? ), OStSTk ’ (31)
and for ¢t > T,f’* andi=1,---,n,
0,k+1 0,k ! =n.k ! =n.k
XL = xOF +/ bo(s, XOFHL L™ )ds +/ oo(s, Xk LME )dBY;
A TII:,* Ty Tlic,* Ty
j k1 ik ¢ - ik t . _— ,
XM = X5 +/ bi(s, XIMHL XUMHL L ds +/ oi(s, XPFTL XUM LY )d Bl
T Tk,* T Tk,* T
k k
t
Ykt 2 yik / il XOMTL XA L ds;
Ty oo Tk

7

n
k+1 2. Lkt j Fngl A 1 j
AR mf{t >0y > E} L2 =N Ll gy
=1

This defines Tf“, i=1,,---,n. By (3.1), it is clear that
k+1,% k,* .
T =77, j=1,,k (3.2)

Repeating the same procedure, we may define (X7, Xén yén [7n) and Tt for i =
1,--- ,n. Finally, we define
. . A . . —
(X?’sznz7Lt) = (X?,n7Xz,n,nl,n,L?,n)7 0<t<7)7, (3-3)

and for t > 7,%,

X? - XB»;,L’* +/

Tn

t t

bo(s,Xg,LTg,*)der/ oo(s, X, Lon=)dBY;

Tn

t t

X} =Xl + / bi(s, XJ, X3, Lyns)ds + /

Tn' Tn

t
A . .=
y; 2 ;g,*+/ Ails, X0, XZ, Lpe)ds;
T,

oi(s, X0, X, ET:;,* YdB:;



This defines (X?, X}, Y}, L;) for t > 0. Moreover, define 7; by (2.4), ,i =1,--- ,n. One can
check straightforwardly that (X, X}, Y}, Ly, 7;) satisfies the system (2.1), (2.4)—(2.6), and

* nx _ Tk’*

s =7 M 1<j<k<n (3.4)
|

The next proposition gives the conditional distribution of stopping times TZ-kH, when the
previous defaults are known. We say that random variables §; are conditionally independent

on D if &1p are conditionally independent.

Proposition 3.3 Assume Assumptions 2.1 and 3.1 hold, ans let i1,--- , i be given. In the

framework of Theorem 3.2, and recalling (3.4), denote
Dk:{Tf:Ti]i,"',T]::Ti , fz(\/]:%H)\/( \/ ]:%j) (3.5)
=1 JF, ik
Then, for j # i1, -+ ,ip and t > 0,
Lt > 1 4t ‘Qf,Dk} = E{exp(vZH! —Ygé;itl)’gf,pk} on Dy (3.6)
kL yikl

TEdt ) T Tt ’1{7';-“+1>T,:+t})’
j Fi, - i, are conditionally independent on Dy, and consequently,

Moreover, conditional on GF V o(Dy), the random vectors (

P{T,’;H > 7+ t’gf,Dk} - E{ exp( SR Yjé;’ﬁh) ‘gf,Dk} on Dy. (3.7)

JFUL, ik

Proof. (i) We first prove (3.6). For arbitrarily given ¢; < --- < tj, denote
HoA * *
Dk:ka{Tl =11, - )y Tk :tk}v (38)

and define
- NP . . - 1.
(X0 XL YR 2 (x0L XLy, and LY 2 S L

) - . o _ . . A - e e e
Forj=1,---,k, define (X?’]H,XZ’]H,Y;Z’]H) = (Xf’],XZ’j,Y?’J) for t <t;, and for t > t;,

Xt = Xtoj’J +/t bo(s,Xg’JH,L?j’])ds +/t Jo(s,Xg’ﬁl,LZ’J)dBS?
. Tl o ’ .
X = X [ X0 B s+ [ (s, XKL L)
g J
PR AN o~ ~ . ~ . . ~ .
T T [ RO X L s

J



where, for j > 1,
frd & frg=1 17
P n ot
Then, it is clear that
(XO,k+17Xi,k+17yi,k+1) _ (X07k+17)2i,k+1’ ?i,k+1) on Dk (39)

Note that, for any 7 and ¢,

i k+1
{rit >t} = (B >y,
(rF =1} = {y;’»’fﬂ =FE; and Y"1 < E; for alls<t}.
Then
P k41 k+1 iyk+1 . : :
Dy = {Til+ :tb"'aTi,:_ :tkvyzc <Eivl7£217"'a2k’}
1 1 jk+1 i+l ., .
= {Tiki—’_ :t17 7TZ]<];+ :tk7E] >}/ti; N 7EZ >}/t1;€ i 7Z#Zl7”' 7Zk’j}'

and, for each 7,

ikl . .
gf\/o-{’rikl+1:t17"'7Tl'lf€+1:tk7E’i>}/tZkJraz#llv""Zk’v]}
n
Sk A .
< gtj:<\/fzk+t)\/(\/o-(Ei)>'
=1 iF£]

Then, by (3.9), on Dj, we have
P > i+ tlok D} = B{®{E; > V4T |61, By > vt |k, D}
= B{p{E; > VG By > VP |k, De} (3.10)

Given QNf 7 and E; > }Nfé’kﬂ, one can evaluate the conditional probability of the set F; >

Yt{jﬁl in (3.10) as
k1| k. Skl Skl ikl | Gk = k41
P{Ej > Yo ’gt 1 Ej > Y, } = E{ exp(Yy" T = Y )‘gt ' E; > Y, }

Thus, by (3.9) again, we can continue from (3.10) to get

P > 7+ t|0k D} = B{E{exp(FH = VIATH|G1, By > V4 f, Dy
= E{E{ exp(J* = YIATH|G1, By > i | f, D
- E{ exp(Y R+ — nivﬁjl)‘gf, Dk}. (3.11)
Since t1,--- ,t; are arbitrary, (3.6) follows.

10



(ii) By the arguments in (i), clearly Ly, 1p,. Xg,;kﬂ, ﬁi’kﬂ are all G¥ Vo (Dy,)-measurable,

j # i1,--,ix. Then conditional on the filtration {GF V ¢(Dy),t > 0}, the processes

{Xg:f:.rl,j # i1, ,i} are conditionally independent on Dy,. Thus so are {Ytjkiﬂ,j +

i1, ik} and therefore all TJI-C—H’S are conditionally independent on Dy,. Since t1,--- ,t
Gkl okl k1N - . .. .
XT]:+. ’Yf,j—ir- i T ), j # i1, ik, are conditionally indepen-

dent on Dy, conditional on the filtration {GF V o(Dy),t > 0}. Since oyl = T,f:ll* =

min{T;ngl ©j F# i1, ik} on the set Dy, (3.7) follows from (3.6) immediately. [ |

are arbitrary, we see that (

We conclude this section by some monotonicity properties of the system (2.8).

Assumption 3.4 by is decreasing in «; for all i, b; is increasing in xo and decreasing in

a; A 1s decreasing in xg,x; and increasing in o; L* > 0 and is decreasing in t.

Lemma 3.5 Assume that Assumptions 2.1, 3.1 and 3.4 hold. Then for any F°-adapted
process o taking values in Dy, the system (2.8) is well-posed. Moreover, T{* is decreasing in

a,i=1,---,n, and L™ is increasing in t and a.

Proof. Under Assumptions 2.1 and 3.1, it is clear that the system (2.8) is well-posed. Since
L > 0, we see immediately that L® is increasing in t.
We now assume ol < o?2. By the standard comparison theorem of SDEs one can easily
show that
X001 > Xo,oﬁ’ Xbor > Xi,ag, yiher < yiaz,

It follows immediately that 7% > 7/*2. Since L' is decreasing in ¢, we see that LY < Lo,
|

Remark 3.6 (i) If we interpret X* as the performance of the i-th firm, then the monotonic-
ity assumptions in Assumption 3.4 imply that the n firms are ”partners” and are positively
correlated to the common factor X°, and thus they are all negatively correlated to the
average past loss L.

(ii) Assumption 3.4 can be replaced by

by is increasing in «; and for all 4, b; is increasing in 2% and «;

0

A; is decreasing in x”, x* and «; L' > 0 and is decreasing in ¢.

In this case the firms are ”competitors”, and all the results in this paper will still hold true,

after some obvious modifications. [ |

11



4 The Fixed Point Theorem

Recall that the fixed point problem (2.10) provides the candidate for the limit process L*.

We first have the following obvious result:

Proposition 4.1 In the setting of Example 2.3, if A is bounded and uniformly Lipschitz
continuous in «, then ODE (2.12) has a unique solution « taking values in [0, 1], and thus

(2.10) has a unique fized point.

In the rest of this section we consider a more general and non-trivial case, in which the
fixed point argument works. First, recall the coefficients in (2.5) and (2.6). For simplicity,

we assume in this section that
Ty =X, bi:b, g; = 0, )\i:)\, ’LZ 1. (4.1)

We next introduce assumptions on the loss processes Li. Since L! is Fi-adapted, we can

write
L= ;i(t,B%, BY,), t>0, i=12--- (4.2)

where each ¢; : Ry x C(][0,00);R)? — R is a measurable function. The simplest case is
the one in which all ¢;’s are identical. However, we may consider a more general case
in which there is a classification over the possible level of losses. The basic idea is that
there are different loss types, known to the public, and each firm’s loss at default falls into a
particular type with a certain “frequency.” The following definition, albeit technical, reflects

the essence of this idea in a general form.

Definition 4.2 Let ¢ 2 {©(0)}oejo,1) be a family of measurable mappings ¢(6) : Ry x
C(R4)? — R and p a probability measure on [0,1]. We say the sequence {p;,i > 1} has
distribution (p, ) if, for any € > 0 and T > 0, there exist k = k(e,T), disjoint subsets
©1, -+ ,0; C [0,1], and disjoint subsets D1,--- , Dy, C N such that

u([o, 1]\(@1 U U @k)) <&

1 / .
Sup ||¥i — (ped,ue Too < €, J=1k 4.3
up I w6, Jo, (0)du(0)| (4.3)

Here ||¢||7,00 2 sup {|<p(t,x_0At,x./\t) 0<t<T,x%x¢ C’(R*)}.

12



To illustrate the idea behind Definition 4.2, we provide several examples.

Example 4.3 (Singleton case) Let 6y € [0,1] and u({60}) = 1. Then {yi,i > 1} has
distribution (@, 1) if and only if there exists a set D C N such that

DN{L,-- )
lim =1 and lim |lpi —¢(6o)|l7,00 =0 for any T > 0.

n—oo n i€D,i—00

The simplest case for which {p;,1 > 1} has distribution (¢, ) in this case is of course when

i = p(bo) for alli > 1. That is, there is only one type of loss.

Example 4.4 (Discrete case) Let {0y, k > 1} C [0,1] and pu({0x,k > 1}) = 1. Then
{@i,i > 1} has distribution (@, u) if and only if there exist disjoint subsets Dy, C N, k > 1,
such that

ka{la ’n}
lim = u(fr) and lim  |¢i — ¢(0k)||T00 =0, T >0,k>1.

n—oo n 1€ Dy ,i—00

In particular, if k = 2, p(01) = p(02) = 3, then we could set p; = @(61) when i is odd
and p; = p(02) when i is even, so that {y;,i > 1} has distribution (¢, p).

Example 4.5 (Continuous case) Let y be the Lebesque measure on [0,1] and ¢(0) =
0o, where o is a given mapping: Ry x C(Ry)? — R. For each n and 2"t < i < 2",
assume @; = (127" — 1)pg. Then one can easily check that {@;,i > 1} has distribution
(o, ).

We will need the following assumptions on the coefficients:

Assumption 4.6 (i) (4.1) holds and oo(s,xo, ) = 09(s,x0), (8, T, Ti, ) = o(8,2;);
(i) (4.2) holds and {p;,i > 1} has distribution (@, p), in the sense of Definition 4.2;
(iii) there exists a constant K > 0 such that |p;| < K and |\ < K.

We note that under Assumption 4.6 (i), the system (2.8) now becomes:

t t
X?’a =x0+ ; bo(s,B,OAS,Xg’O‘,ozs)ds —1—/0 O'()(S,B,O/\S,Xg’a)ng;
X =+ /0 b(s, BY,, B\, X2 X0 ay)ds + /0 o(s,B%,, B\, X0*)dB;,  (4.4)
. t . . . .
yjio 2 / s, B%,, Bl ,, X0 X0 a)ds;  7& 2 inf {t >0: Y > E}
0

7

The following lemma is useful.

13



Lemma 4.7 Assume Assumptions 2.1, 3.1 and 4.6 hold, and let o be an FO-adapted process
taking values in Dy = [ K, K]. Denote

1
s & /0 o(0)dpu(0); (4.5)

1>

t 1,
D) & B{ [ ol B BRI B Bl X900 X2 a7 as| 7). (40)
0

Then

(i) & are conditionally i.i.d., conditional on FY, and

lim E{|L}"* — Ty(a)|} = 0, (4.7)
n—oo

(ii) Moreover, if Assumption 3.4 also holds, then I'(«) is continuous and increasing in t,

increasing in «, and satisfies 0 < T'y(a) < K, a.s.

(iii) The process I'(a) can be written as

t 1,
Ft(a) :/0 E{SZ(S?B~0/\s7B-l/\s))‘(3>B~0/\svB-l/\s>Xg7aval’a>O‘S)e_Y5

}f}ds. (4.8)

Proof. (i) By our assumptions, it is readily seen that {(B%, X*® Y% 72)}"  are con-
ditionally i.i.d., conditional on F?. So it suffices to prove (4.7).
For any t > 0 and € > 0, let k, ©;,D;, j = 1,---k, be as in Definition 4.2. Denote

A A A
@k+1:[0,1]\(@1uu@k), Dk+1:N\(D1UUDk)7 D?:D]m{lavn}v

and

) 1
= ey /@_www(m.

J

>

Note that, by denoting ¢;(s) = 0i(s, B%s, Biy),

k+1
Ly = ZL oliracyy = Z% Miracy = Z Z @i (1) ro<py
] lzGD"
[Z > Bt ey +Z > el ey + Y @il )1{T“<t}:|'
Jj= 1zeDn j= IZED” zED,H_1

14



and that

Ft(O[) = E

= > wo; )E{%( )1{T“<t}“’rt } + 1(0p41)E {@k—H(Tla)l{Tf‘St}‘f'?}-

j=1

Since |p;| < K, it is obvious that |@;| < K. Then by (4.3) we have

fZZm — 5 () Loy <

7=1 zED"

1 o KIDE
~- !w(n)lé%%ffﬂ(@m)ém;

" zEDkle
1(Ok41) |11 (1) < Kpi(Op11) < Ke.
Moreover, for each j = 1,--- , k, by the standard Law of Large Numbers we have
. ID” 1
A g > Pty = Jim = )<ty
’LGDn EDn

= M(@j)E{%(ﬁ)1{T?St}‘ft0}'
Thus

Tim |L7 — Ft(a)‘ < (2K +1)e.

n—oo

Since ¢ is arbitrary, we prove (4.7).
(ii) It follows directly from Lemma 3.5 and (4.7) that I'(«) is increasing in ¢ and «, and
0 <T(a) < K. Moreover, denote

2

1,
7( ) @(t B-O/\t7B-l/\t)/\(taB-O/\t7B-l/\szt(),avXtLa?at)eth .

For any ¢ and £ > 0,

]Ft+e(a) - Ft(a)’

e /tt+ws(a)ds!f?+g} —1—‘1[3{/ o)dsl 7.}~ Ef /Ot%(a)ds,fto}’
K%+ [Ef /Otws(a)ds\f&g}—E{ /Dt’ys(a)ds]]:f}’.

15
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Since the filtration F° is continuous, sending ¢ — 0 we obtain immediately that lim._, Dite(a) =
I't(«). Similarly, one can show that lim._,oI't—-(a) = I's(«r). Therefore, I'(a) is continuous
in t.

(iii) First, by the Fubini theorem we can write (4.6) as

MNa) = E{ /Ot ys(a)ds‘]:?} = /OtE{vs(a)‘f?}ds.

Since for each s € [0,1], 7s(a) is Fs-measurable, and F = fgv]—"gt, where ]:Si 2 Vicuet FO
is independent of Fj, it can be fairly easily checked that

E{vs(a)| 7} = E{ys(a)|FJ v Fy} = E{ys(a) |7},

and (4.8) follows. [ |

Remark 4.8 The condition (4.1) is to ensure that 7* are conditionally i.i.d. and thus one
may apply the standard Law of Large Numbers. It can be weakened slightly if one applies

generalized Law of Large Numbers by using the Linderberg condition. |

We conclude this section with the following important result.

Theorem 4.9 Assume Assumptions 2.1, 3.1, 3.4, and 4.6 hold. Then there exists F°-
adapted process such that o = T'(«).

Proof. We will apply Zorn’s lemma to prove the theorem. First, denote

£ 2 {a : F%-adapted, increasing, cadlag , and 0 < o < K }
By Lemma 4.7, we see that I'(a) € .Z for any o € .. We introduce a partial order “<” in
&, by at < a?if and only if o} < a?,t >0, P-a.s. Now consider the set

foé{aeof:agf(a)}.

Obviously 0 € %, so % is not empty.
. . A
Assume that {a?}gce is a totally ordered subset of .%y. Define d&, = esssUPgeg af for

all 7 € Q4. Then clearly &, is increasing in r, a.s. Define

~ A T o
Gy = lim ap, t2>0.
reQ4N(t,00),rlt

0

Then it is easy to check that & € L. Since o' is cadlag , we have &y > a?, t >0, a.s. for

all # € ©. Furthermore, since I' is increasing in «a, I'(&) > I'(a?) > of for all . Then

16



(&) > ap, r € Q4, as. Since I'(&) is continuous, we have I'y(&) > &, for all ¢ > 0, a.s.
Thus & € %, and therefore, & is an upper bound of {a}gce in %.

Now applying Zorn’s lemma we conclude that 2y has a maximum point o* in %5. We
claim that a* = I'(a*). Indeed, suppose that the equality fails. Then there exists € > 0
such that P(7; < 0o) > 0, where 7 2 inf {t >0:T(a*) > of + 5} is an F0-stopping time.
Let m = inf{t > 7 :of > af + 5} be another FO-stopping time taking values in [0, oc],
and define

df;é{ of, t<T or t>Ty;

ay +e T <t<T.
Since o* is cadlag , we see that 79 > 71 on {7} < oo}, thus
a* <a* and of £a". (4.9)

On the other hand, by the definition of 7 we see that &* is still increasing, then it is clear
that a&* € Z. Moreover, since I is increasing in both o and ¢, then for t < 71 or t > 1o, we
have I'y(&*) > T't(a*) > af, and for t € [11,72), ['y(&*) > Ty(a*) > T (a*) > of, +e = af.
This implies that a* € %, in contradiction with (4.9) and the assumption that o* is a

maximum point of .%. |

5 Potential Applications

In this section we present some potentially useful applications under the “i.i.d.” framework.

To the best of our knowledge, these cases have not been fully analyzed in the literature.

5.1 Pricing a single name credit derivative

Suppose we are interested in pricing a credit derivative written on one firm, but the default
intensity of the firm, A, depends on the average number of defaults of many firms, as in our
model. If our assumptions hold and that number is approximated by the process ay, then
we can find the price by using A(t, X7, ay).

Specifically, consider the setting of Example 2.3. Recall that in this case the fixed point
can be determined by a randomized ODE (2.12):

t
ap = / (1 — as)A(s, X2, a)ds. (5.1)
0
Let us assume further that A is linear in «, that is,

)‘(ta X?,Oét) = A(t7X1?) + B(t7 Xl?)at?

17



where A and B are continuous functions, and are uniformly Lipschitz in . Then the ODE

(5.1) becomes (path-by-path) a Riccati equation:
04 - (1 - O‘t))‘(t7 Xt07 at) - P(t7 Xl?) + Q(t, Xto)at + R(tv X?>at27

where P = A, Q = B— A, and R = B. Since the equation clearly has a particular solution

ay = 1, the general solution can be written as
o =141/
where vy solves the linear equation
v, = [A(t, XP) + B(t, X)Jv + B(t, X7).
Since ap = 0, we have vg = —1. Solving this ODE we obtain

v = —eJopads 4 /t efstpTdrB(s, XNds, t>0,
0

where p 2 A+ B. The process « is thus explicitly found, as a functional of X°, and we
then face a standard problem in credit derivatives pricing, in which the (limiting) intensity
only depends on the factor X?.

If we further assume that A and B are constant, it then follows that

A+ B
Ae(A+DB)t + B
Thus, the default intensity can be approximated by

Oét:].—

B
Ae(A-‘rB)t + B

We have then shown the following: If the intensity is of the form \; = A+ BN; where Ny is

M=A+Ba=(A+B)|1-

the average number of defaults of many firms, then we can price derivatives which depend

on A by replacing it by simple deterministic process A

5.2 Finding expected loss

We now consider a problem of computing the expected loss of a portfolio of a large number
of defaultable loans, for example credit card customers. We assume that the loss of entity

i is given by (4.2). According to (4.6) and (4.8), we expect to have
t
o = B{ [ ol B BRI B Bl X0 X0 ) )
0

t
- /E{@@’B~0/\s7B'l/\s))‘(sﬂB~O/\57B'l/\stga’Xsl@vas)e_YSl’ "Fg}ds (5'2)
0

18



Let us assume further that
A(-+) = Ao(t, By, ar) + Ai(t, By, Blyy).
Then, we can write (5.2) as
ap = /Ot [FS/\O(S, BY,, as) + Gs}e_ Jo do(wBihsow)dugg
where

Fs é E{@(S7B.O/\57B.ll\s)eifosAl(u’Bp/\mB»lAs)du

7}
GS é E{@(& B-O/\37 B-ll\s)Al (37 B-O/\s7 B-l/\s)ei fog A (u’BpAS’B‘lAS)du

7.
Or equivalently, denoting 8 («) 2ok 0 (u, By o)
o) = [Fyho(t, B ., ) + G4 BY ().
If we assume, in addition, that
Mo(t, BGy, ar) = Mo(t, BY,) + R(t, B aw = I + Ryay,
then (5.3) becomes
of = [(Fd+ Gr) + Fr Ry HiBi(a) = [Fy + Reov] By(ev),
where [ (o) = e~ Jo Rsasds and

H; = e_f(;t Isds, Ft = (Ftlt + Gt)Ht, Rt = F;R:H;.

Differentiating on both sides of (5.4) and using (5.3) we obtain the ODE for a:

of = {[F]+ Rja; + Rio}] — [Fy + Rev] Ry} By ()
[Reot, + (R} + F,Ry) oy + Ry Read + Flla,
Ft + Rtat ‘

Moreover, by (5.2) and (5.4) we have

ag =0, 046 = ]“:b = Fyly + Gy = @(0,0,0)[{) + Go.

(5.3)

(5.5)

(5.6)

The equation (5.5) with initial conditions (5.6) is a non-linear second order ODE, which

in general can only be solved numerically.

To recap, we have shown that if we impose technical conditions to guarantee that the

limiting average loss is indeed equal to ay, then we should be able to compute this limiting

loss, for all times ¢, in this fairly complex model for individual losses.
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6 The Law of Large Numbers

In this section we present our main result. The aim is to show that in our strongly correlated
self-exciting model, the Law of Large Numbers still holds, and the limit will be a fixed point
discussed in the previous sections. Since the proof is quite lengthy, we defer a part of the
proof to the next section.

To begin with we strengthen the technical conditions:

Assumption 6.1 (i) oo(t, zg, @) = oo(t), oi(t, xo, T;, ) = o;(t);

(ii) by, bi, \; are Lipschitz continuous in xg, i, uniformly in (t,w, ), and L' is Lipschitz
continuous in t, with a common Lipschitz constant K ;

(i) by, b;, \; are Lipschitz continuous in o, uniformly in (t,w,xo,x;), with a common
Lipschitz constant Ag;

(iv) 0 < Ay <X\ < Ag; 0 < LP < Ag;

A2

(1)) Ao S 73/\21/\3.

Remark 6.2 The condition (v) above implies that the system is ”weakly” correlated to

the average loss L. [ ]

In this and next section, we denote by C a generic constant which depends only on the
constants K, A;, i = 0,1,2,3 in Assumption 6.1, and it may vary from line to line. We
emphasize in particular that C' is independent of n. Moreover, we denote by C; (resp. Ce1)
if the constant depends additionally on € (resp. €, 7).

The main result of this paper is the following.

Theorem 6.3 Assume Assumptions 2.1, 8.1, 8.4, and 6.1 hold. If the fized point problem

(2.10) has an T -adapted solution o satisfying
. Fr,o _
11151;01@{@ at|} 0. (6.1)

Then the Law of Large Numbers (2.11) holds.

As a direct consequence of Theorems 4.9 and 6.3, and (4.7), we have

Corollary 6.4 Assume Assumptions 2.1, 8.1, 3.4, 4.6, and 6.1 hold. Let o be the solution
to the fized point problem: o = T'(«). Then the Law of Large Numbers (2.11) holds.

Before we prove Theorem 6.3, let us make a quick analysis. We fix some T" > 0 and
consider ¢ < T. First recall (X%, X4 Yo 7o [ in (2.8). Since

Lt — | < |Ly — L]+ |L§ — el (6.2)
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by (6.1) it suffices to analyze the convergence of E{\Et - I:?|} Notice that

_ _ 1 & A
E{|Lt - L?|} <=L where L 2E{|Lylrch — Lo 1{Tia§t}|}. (6.3)
i=1
Without loss of generality we only estimate I,,. Note that

I, < CE{’Tn — T Y <tra<ty + Ym<icre) + 1{r;3<t<rn}}- (6.4)
Therefore a crucial step is then to estimate

E{l{r,ctargy} = P{ma <t <70} =P{Y}" > B, > V™",

6.5
E{1{73<t<7n}} =P{re <t<m}= ]P){Yta’n > B, > Y7}, (6.5)

The main difficulty here is that Y*™, Y™, and E, are not independent in general. But
without knowing their joint distribution it is difficult to estimate these probabilities. We
therefore introduce an approximating system, in which adding a new (n-th) “name” each
time n increases, we use the bounds on the underlying processes, so that the probabilities
in (6.5) can be estimated. To be more precise, let us consider the following approximating

losses. Fori=1,--- ,n,

t t
X2 = a0+ [ ool X0 Eds + [ on(s)aBY
0 0
xp! in+/ bi(5>Xg’1aX§’laL;)ds+/ 7i(8)dB;
i1 A t 0 . ~ °
v :/ Xi(s, XP1 X0 Ly)ds;
0

14
T, =

~1

. i1 a1 ‘

inf{t: Y, > E;}, L;= n E LZTill{Tilgt}J
i=1

and . t
X?’Q = X0 +/ bU(SanQ?ig)dS +/ UO(S)dBS’
2 O
XiP =it [0 X0 X0 20ds + [ oi(s)as
o A t 0 - ~ ’
0
A ;.2 2o 8 Ay 1 S
e A X;Ligl{ffq}-
=

We emphasize that L' and L? do not involve 7}, 72

1 72, Consequently, except for 7.}, 72, the

ny 'no
above systems are now independent of FE,. The following theorem is essential for our

analysis. We defer its proof to the next section.
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Theorem 6.5 Assume Assumptions 2.1, 3.1, 3.4, and 6.1 hold. Then, fori=1,--- ,n, it
holds that,

Ly <L <Lf X 2 XP = X% Xyt 2 X{ = 0% V) <Y <V o = 2 7(6.6)

Moreover, for any T > 0, there exist constants € = er € [0, %) and Ct > 0 such that

. . Cr
E{AXZ AYZ} < C Vteo,T). .
t T AY = e nn vt € 0,7 (6.7)
where
AXPEXP X[ AV R Yoy
Proof. See Section 7. u

We are now ready to prove Theorem 6.3.

[Proof of Theorem 6.3.]

In light of the previous argument and (6.1)-(6.4), we need only to obtain uniform esti-
mates for each term on the right hand side of (6.4) as n goes to oco.

To this end we first note that, with a simple application of the Gronwall inequality and

the uniform Lipschitz conditions on the coefficients, it is readily seen that
X0 = X0+ 1X] = X0 Y =Y <0 [ (L aulds. (6.9)
0

Now, for 7, < 77 <'t, one has

T

YTTTLL =Lp= YTC:?ZR - Yrim + / ' )‘n(SaX?7O7Xsa’nv as)ds > Y‘r%n + M[ry — 7l
Tn

Thus

n

1 b

TN — T < E|YTZ R S C/o |Ls — as|ds.

With a similar argument for the case 7, < 7, we then obtain
1 b

|7 — 1| < —|Y =Y < C/ |Ls — as|ds. (6.9)
Al n n 0
Next, recall (6.5). By Theorem 6.5 (i) one has
P{r, <t <78} =P{Y]" > E, > Y"} <P{Y/"* > E, > Y,*"}.

However, since E,, is now independent of Ytn’2, Y, ", we can use the fact that E,, ~ exp(1)

to get
Pl <t <79} < E{le™ " — e <E(Y" - YY)
< E{v " -yl + v -y (6.10)
t
< C’IE{/ \Es—as\ds+AYt"},
0
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thanks to (6.8). Similarly we can also derive that
t —
P{r® <t <m}< CE{/ Ly — a|ds + AYt”}. (6.11)
0
This, together with (6.8)-(6.10) and (6.4), as well as (6.8), leads to that
t
I < c/ E{|L. — o[}ds + CE{|L§ — oy + AY}"}.
0

Next, fix T'> 0. For all 0 <t < T, by Theorem 6.5 we have

t
- - C

I, < c/ E{|L, — of}ds + CE{|L§ — oyl } + L.

0 Inn

Similarly, for ¢ = 1,--- ,n, we have

t _ . CT
I <C | E{Ls — as|}ds + CE{\Lt - at]} v T

0 Inn

Then (6.2) and (6.3) lead to

E{\E? - at|} < C’/OtIE{|LQ ~ ay|}ds + CE{|E?’°‘ - at|} + 1%

Applying Gronwall’s inequality we obtain

_ _ C
E{|L7 — a|} < C’TIE{|L?"" - at|} + L, 0<t<T
nn

The theorem then follows immediately from (6.1). [ |

7 Proof of Theorem 6.5

In this section we prove Theorem 6.5. We begin with two technical lemmas. Both of them

are fairly easy to prove.

Lemma 7.1 Let {a}'}}">° be a two indices sequence of nonnegative numbers. Assume that

the following recursive relation holds for some constant C':

Ink C C

ag =0 and aZH:[l—l-T%-g]a}gij, k=0,1,---,n—1.

Then, a}} is increasing in k and there exists C > C, such that for any € > 0,
C

enflnn

aﬁl_e)n] < =0, as n— oo,

where [x] < x is the largest integer smaller than x.
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Proof. That a}} is increasing in k is obvious. Now for any 0 < e < 1, and k < [(1 — ¢)n], we

have
In C C
appr < [14‘7‘*‘ ] + -

This implies that
g1 ay c

< .
[1+lnTn+Q]k+1 - [1+lnTn+%]k sn2[1+1n7"+%}’“+1

n

Then, for k£ < [(1 —¢)n],

k
C‘k+1
< M
B o X o g
and thus
k Cik+1

C Inn C._; C[1+—”+—]

an _ 1+ o + — 17 < o n n

k+1 = § :[ ] = en2 nn +%

ln C(
am g [1 + + ﬁ] _ c e(lfs)nln(1+m7n+%)
[(lfe)n] - 5n2 % _|_ % 8’]’L(C ‘l— ]n n)
< O Laontnio O gomnie)y o C o oo
= Znlnn enlnn ~ enflnn ’
The proof is complete. |

Lemma 7.2 Let & and n be two random variables and v an increasing (resp. decreasing)
function with E|y(§)| < oo and E|ip(n)| < co. Assume P{§ > x} < P{n > z} for any x € R.
Then E{¢(§)} < (resp. =) E{¢(n)}.

=

Proof. We prove only the case in which 1) is increasing. Denote G¢(x) = P(§ > x) and

Gy(x) 2 P(n > z), x € R. Since ¥ is increasing, we have

$(@)Ge(w) = F{Y(@) ey | < B{o(©Lieny} =0 a5 2 00,

Similarly,
lim ¢()Gy(x) =0, lm (@)1 - Ge(@)] =0, lim_(x)[1 - Gy(x)] =0.
Then
lim (2)[Ge(2) — Gy(w)] = 0,
i $(@)[Gele) = Gya)] = Tim_b(@)[[1 = Gyl)] — [1 - Gel)] = 0.
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Integrating by parts, we get

Bo© v} = - [ w@dGet) - Gy0] = [ [6elt) - Gyfolauo

—00

The result follows immediately. |

Proof of Theorem 6.5.] (i) First, (6.6) follows immediately from the monotonicit
[ ; y y
assumptions and the construction of the solutions.

(ii) In this step we establish some important estimates. Recall that {T]i’*}, {7',3*} are

the order statistics of {71}, {72}, respectively; and denote

A1 2 1x & 2% A
A =7" -1, 1" =1"=0.

Then clearly, AX{ = AX} = AYJ = A7y = 0.
Fix k > 0, and assume ¢ € [le . 7',31:1]. Note that in this interval one has

¢ t
X0 = X2 4 /2 bos, XJ%, L22..)ds +/ oo(s)dBy,
k Tk’*

2,%
Tk

2% Ty ,
Tk k

. . t . A t .
X = XZ;* +/ bi(s, X2, X022 L%, )ds + /2 _oi(s)dBL,
T,
Y2 = YTZ’* + /2 Ai(s,Xgﬂ,X;,?,Lig,*)ds.
k Tkv*

2

Now, for [ = 0,--- ,k + 1, we denote 7; (Tll’* \Y% 7',?*) A T,?fl. By (i) we deduce that

T];l:’* > TZ’*, for all k£, thus we must have

~ ~ 2%
Tk =70 < 1§"'§7—k+1:7_k+1-

Let us now consider the sub-interval [7;, 7;11], on which

t t
X2 = X2+ [ (s, X0 Eas + [ oo(s)aB
a T
Xz’l = Xgl + [ bi(Sng’la X;’I’ L%)ds + / oi(s)dB;,
Ti Tl
, , ¢ o
Y;Z’l = Y;l’l —+ / )\i(S, XS’I,X;’I, L%)d‘s

T

Note that on the set {7; < 741}, we must have Tll’* < T,?fl and Tlljr*l > 7',3’*. Assume that
for each j = 1,--- [, the ordered statistics is attained at le’* = TZIJ Then, in light of (i) we

have Tin < Tilj < 7']3_’:1, and thus

T3 <ot (7.1)



Then, we have

R ) 1 ;. 1 ,
2 1 7 K3
0<L%.—LL = =M [L% - LY+~ > Li,.
T n 4 Ti; Ti; n Ti

7=1 1<i<k, 72" #72

J

l
K k—1+1
=3 Ar, + ulnl W
n

j=1

IN

n
By the Lipschitz continuity, we have

dAX?

IN

[KAX? + (L2, — i;l)} dt;
Tk

A

dAX] [KAXtO + KAX] + Ao(L2,,. — L )} dt:

5
k

dAY; < [KAXE + KAX? + Ag(L2,. — L} )} dt.
Tk
Then,

d(AX? + AX! 4+ AY) < 3 [K(AXtO + AX] + AV 4 Ao(L2,,. — LE )] dt,
Tk

7
and thus

e EUAXY + AX] 4 AY)

i . LA
< eSENAXY + AXL + AYE] + =2

K T i
Let us define

A A No: _3pcs _ A - .-
Ao =0, Ar=A5+ fo[e ST eTENL2, — LY, te 7, il
k

Then, A is increasing, and by induction one can easily see that
e PEUAXY + AX] + AY[] < A, t2>0.

We now estimate A. First note that for any i,
1

YY =B =Y =Y} +/ Cils, XU XB Lhds > Vi A A,

2
T i 2
i

This, together with the monotonicity properties in (i) (for Y?), shows that

1 . 1 2
AT < —AYH < —3ETTA .
AT TN i
Assume that the order statistics 7%*’s are attained at 7‘12’* = 72.2 R ,7',3’* = 7';2
1 k
7 =1,---,k, one has
1 3K7? 1 2,
=724 At < e YA 2 < 7',3’* + 3K A .
i i g i A i A Tk
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. Then for



Since Tk * < max 7'~1 we obtain
1<<k iy’

1 *
Arp < EeSKTE A (7.6)

Plugging (7.2) and (7.5) into (7.3) and recalling (7.1), we see that

I
Ao, _aps a3k K E—1+1
Ary < An+ 2R e 3Kn+1][m 3 €3K73A7i2j + S T A

K n
Kl E—1+1 2,%
S ATl + 3A0[7—l+]_ — Tl] TIATIE,* + n A 3K ]
Summing over [ =0, --- , k, we obtain
A 2,% A 2,%
Tk Tk
k
N 3AoAs _ 2 . -
< *A 2*Zl7'l+1—7'l e Z(k—l+1)[Tl+1—Tl]
=0
C b 3AOA3 2 F
2% ~ —3KT* ~ 2%
- gAT,j* Z[TkJrl 7 + 0 © k Z[Tl -7
=1 =1
k
Ck 9. 947  SNoA3 _gp 2 v 2. 2% 2 %
< TA T =T ¢ 3K, Z[(Tl )t A (T3 — )]
=1
k+1
Ck 2,% 947  SNoA3 g2 2% 2% 2,% 2,%
= TA 2 [T — T3 — ¢ 3K Z[(ATl* +7 =TT A (T — 7))

=1

Note that, for any z,a, 3 > 0, (x —a)T A B < O%/Bx Then, by (7.6), we deduce from the

above
Ck )
Ao — A [1 _ 2 }
o O T n [ k“ i
3A A 2 7_2 * 7_2 *
< TS [Z A} 2 kJr,l 5 ox T Tk+1 -7 *]
Tl — T - 7
3A A 7_2 * 7_2 * C
oAs3 k+1 k 2% 2%
< -y Ale 53 5t — [TkJrl . |- (7.7)
E—— Tey1 — T -

For any t; < --- < t; and 141, - , i, recall (3.5) and (3.8). By Assumption 6.1 (iv) we
derive from (3.7) that

e—(n—k)Aat < P{Tkﬂ >ty + t’gt R ===, k} < e~(=RAt(7g)
y (7.3), one can easily check that

: k
{Tfy*:T’Z:thl:l:”'vk} 18 gt \/ (

0(712’* = Tin = tl))—measurable, j=1,--- k.

<=

AT-Z* ]_
J

=1
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Then (7.8) implies that
e e e e I e R A ()

Next, using the second inequality in (7.9) and applying Lemma 7.2 (by setting £ = ’7']3_’:1 —
Ts’*a n ~exp{(n — k)A1}, and ¢ (z) = =) we obtain
1

E{ﬁfﬂ —7"|o (Tzz’iATf’*al =1, k)} S A

Since —% is concave in x, applying Jensen’s inequality we get

a+x
2%
O'(Tl ,Ale,*,l =1,--- ,k)}

(nik)Al 1
7@ WA+ Tk -7 1+ (n— k:)Al(T,f’* — TIQ’*)

2% 2%
Tk+1 - Tk

E{ .
* 2%
Thd1 — Tk Tt -

Let El, “ee ,Ek be i.i.d. exponential random variables with rate 1 and independent of F.

Since Hﬁ is decreasing in x for a > 0,we can apply Lemma 7.2 repeatedly by using the

first inequality in (7.9) and setting & ~ exp{(n — k)A2}, n = Tk_H - 7']3 * and (1) = 1+1ax

to get
E{l +(n— k)All(le* T U(Tf’*,Arf’*’j =1, 7;)}
1 1
o e R e

For k — 1 > 1, noticing that Z;:zl Ej has exponential distribution with rate k — [, we have

IE{ 1 }S(n—l)AgE 1 ~} (n—0DAy 1

(n— k)A, {Zf;}Ej T k)M k—1

Plug all these into (7.7) and denote

ag = IE{ATE,*}, ar, 012%6 a;
Then, we get
a1 < [1 o Clj k):|ak - 325)\?3 [l::al((g:/?)[/\i k—1 a’“] * n(nC_ k)
< i e S S L O
< a [1 + n(ncf k) % ?)AO*/\A%QA3 h;k} n(nClj k)
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For k < (1 — €)n, thanks to Assumption 6.1 (v), we have
Ink C. C
a1 < [1+n—+ ==+ 5.
n
This implies that
Ink C€ o C.

Since ag = 0, applying Lemma 7.1 we obtain

CL>(k1—€)n =

— 0, as n — oo,
nalnn

for any ¢ > 0, proving (ii).
(iii) We now prove (6.7). Recall that A is increasing. For any € > 0, by (7.4) we have

E{AXy} = {AXt[ {21*5 >t}+1{7'(1 9 <t}]}

3Kt
< ME{an 2 M>t}}+ E{AXf {Ti’*g)n«}}
< CrE{Az. J+E{AXA2e )
Cer
< =L 4 EHjAX }1@2{7(1 e <1}
Cerr
e +C'TP {T <t}

However, from (7.9) and applying Lemma 7.2 we see that

(1—e)n ~
2% ~2 % é Ez
]P{T(l —&)n < t} < ]P{ (1 ) < t}7 where T(l—E)n = Z: m
Observe that
(1—e)n
1 1 1
E 2% _ > In —:
{7(1—5)”} ; (n—1i)As = 2As ne
(1—e)n
1 2(1—¢)
= < .
VC”"{ (- e)n} ; (n—i)2A2 = eA2n
Choosing ¢ = er > 0 so that In l = 2Ao(T + 1), we then have
2 * * ,\2 * ]. 1
< < P
P{ry ), <t} SP{Al, <th <P{&%T. — BT b <t- o, 0 -}
~2 % ~2 % 2(1 - ET) _ CYT
< P{Tu—a)n‘E{ et <= }SV R e
Thus,
Ccr | Cr
E{AX;} < : —_—.
{AXi) < welnn vn
This proves (6.7) immediately, hence the theorem. [ ]
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