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1 Introduction

Modeling of correlation between default probabilities of multiple “names” (individuals,

firms, countries, etc.) has been one of the central issues in the theory and applications

of managing and pricing credit risk in the last several years. There have been dozens of

models in the literature. While each of these models has its own advantages and disadvan-

tages, lax use of such models in practice could in part affect the understanding of the risk

of the credit default and consequently contribute to the extent of a potential crisis in the

market.

In this paper we propose a “bottom-up” model for correlated defaults within the stan-

dard “reduced form” framework. In particular, we assume that in a large collection of

defaultable entities, the intensity of each individual default depends on factors specific to

the individual entity, and on a common factor. The main novelty of our model is that we

further allow a part of the common factor to have a self-exciting nature, reflecting the gen-

eral “health” of the market. More precisely, we assume that the self-exciting factor takes

the form of an “average loss process”, including the average number of defaults to-date as a

special case. The self-exciting feature allows us, in the limiting case, to analyze the impact

of such a “general health” index on the individual entities. However, it also generates a

circular feedback phenomenon that is technically non-trivial.

The self-exciting structure of our model can be thought of as an example of the so-called

“contagion” feature, which has been investigated by many authors using various approaches.

These include Jarrow and Yu (2001), Davis and Lo (2001), Collin-Dufresne, Goldstein and

Helwege (2003), Collin-Dufresne, Goldstein and Hugonnier (2004), Dembo, Deuschel and

Duffie (2004), Giesecke and Goldberg (2004), Giesecke and Weber (2005) and (2006), Frey

and Backhaus (2006) and (2007), Horst (2007), Yu (2007), and Dai Pra, Runggaldier,

Sartori and Tolotti (2009). None of these models contains the circular nature presented in

our model. In a recent work, Giesecke, Spiliopoulos and Sowers (2010) consider a model

similar to ours. However, they impose a more special structure, which enables them to

obtain large deviation type results, in addition to the Law of Large Numbers type results

that we focus on. Self-exciting feature is also present in Filipovic, Overback and Schmidt

(2011), in a ”top-down” model. For an overview of standard default risk models, one can

consult, among many others, the texts Duffie and Singleton (2003), Lando (2004), and Frey,

Mc Neil and Embrecths (2005), and the references cited therein.

Assuming that all the factors are diffusion processes, we first show that the proposed

self-exciting model is well-posed. Our next main objective is to identify conditions under
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which the average number of defaults (or more generally the average default loss), has a

limit, in the sense of the Law of Large Numbers, as the number of names tends to infinity.

Under such conditions, we show that for the average number of defaults the limiting process

solves an ordinary differential equation, while for the average loss the limiting process solves

a more general and complex equation. It is worth remarking that these results, being of

asymptotic nature, are not directly applicable to individual credit risk derivatives, because

they require a large number of names to be involved in the limiting process. However, our

results should be useful for the risk management at a level of an institution, or a country,

with large portfolio of defaultable claims, when the aim is to analyze potential total losses.

For example, it has been stated that the next crisis might come from potentially numerous

defaults of credit card holders. This paper provides a theoretical model which may prove

useful for addressing such issues.

The rest of the paper is organized as follows. In Section 2 we formulate the problem

and the model. In Section 3 we show that the self-exciting model that we are proposing

is well-posed. In Section 4 we study the fixed point problem that determines the limiting

process. In Section 5 we present some potential applications where the fixed point problem

could be solved. Finally, Sections 6 and 7 are devoted to the main theorem involving the

Law of Large Numbers and its proof.

2 Problem Formulation

2.1 Average loss in correlated default models

We consider n “names”, which could be individual investors, financial firms, loans, etc. We

denote their default times by τ1, · · · , τn. Let us associate to each default time τi a “loss

process” Li
t, t ≥ 0, so that the loss due to default at any time t is given by Li

τ i
1{τ i≤t}. We

define the “average loss” of all defaults at time t by

L̄t
△
= L̄n

t
△
=

1

n

n∑
i=1

Li
τi1{τi≤t}. (2.1)

Clearly, one can have various interpretations for L̄ by imposing various choices for Li. For

example, if we set Li ≡ 1, then L̄ is the average number of defaults (for example, the average

number of foreclosures in a given region).

Our main purpose is to investigate the limiting behavior of L̄n as n→ ∞, namely,

L̄∗
t

△
= lim

n→∞
L̄n
t , (2.2)
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whenever the limit exists, and to characterize the limit L̄∗. It is to be expected that L̄∗ will

depend substantially on the correlation of the default times and the loss processes. The

following two examples are the extreme cases, whose limits are quite different in nature:

1◦ Assume that the sequence {(τn, L1
τn)}n≥1 is i.i.d. Then, the Law of Large Numbers

(LLN) implies that L̄n
t → L̄∗

t = E{L1
τ11{τ1≤t}}, P-a.s.

2◦ Assume that the times and the losses are fully correlated, that is, τ1 = · · · = τn = τ ,

L1
τ1 = · · · = Ln

τn = Lτ . Then, L̄
n
t = L̄∗

t = Lτ1{τ≤t}.

In this paper, we will provide quite a general model such that the default times τ1, · · · , τn
are correlated and the limit L̄∗ exists. The main,”self-exciting” feature of the model is that

the correlation of τ1, · · · , τn is built via the average loss L̄n.

2.2 The model

Throughout this paper we fix an underlying probability space (Ω,F ,P), endowed with a

filtration F △
= {Ft}t≥0. We assume that the probability space is rich enough to support a

sequence of independent standard Brownian motions (B0, B1, · · · , Bn, · · · ) and a sequence

of exponential random variables (E1, · · · , En, · · · ), all with rate 1 and are independent of

the Brownian motions. We define the following sub-filtrations of F:

F0 △
= FB0

, Fi △
= FB0,Bi

, i = 1, 2, · · · , (2.3)

the filtrations generated by the Brownian motions B0 and (B0, Bi), respectively, and aug-

mented by the P-null sets. For simplicity, let us assume that F =
∨∞

i=1

(
Fi ∨ σ(Ei)

)
.

We now fix n and the loss processes Li, i = 1, · · · , n. As in reduced form models,

see, e.g., Bielecki and Rutkowski (2002), Duffie and Singleton (2003), Jeanblanc, Yor and

Chesney (2009), we define

τi
△
= inf

{
t ≥ 0 : Y i

t ≥ Ei
}
, (2.4)

where, for process L̄ defined by (2.1), process Y i denotes the “hazard process”

Y i
t

△
=

∫ t

0
λi(s,B

0
·∧s, B

i
·∧s, X

0
s , X

i
s, L̄s)ds, (2.5)

and X0, Xi, i = 1, 2, · · · are factor processes defined by

X0
t = x0 +

∫ t

0
b0(s,B

0
·∧s, X

0
s , L̄s)ds+

∫ t

0
σ0(s,B

0
·∧s, X

0
s , L̄s)dB

0
s ,

Xi
t = xi +

∫ t

0
bi(s,B

0
·∧s, B

i
·∧s, X

0
s , X

i
s, L̄s)ds+

∫ t

0
σi(s,B

0
·∧s, B

i
·∧s, X

0
s , X

i
s, L̄s)dB

i
s.

(2.6)

Throughout the paper, we assume the following Standing Assumptions:
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Assumption 2.1 For each i, the process Li is Fi-adapted; the coefficients b0, σ0 : R+ ×
C(R+,R) × R × R+ 7→ R and bi, σi, λi : R+ × C(R+,R)2 × R2 × R+ 7→ R are Lebesgue

measurable functions; and λi ≥ 0.

We note that here X0 denotes the common factor in the market, that is observable by

everyone; Xi is the firm i’s specific factor, observable only by firm i. It is possible that each

individual firm has risk factors that are observable by others in the market, and we include

such factors into the common factor X0. It is clear that each τi is an F-stopping time, but

not necessarily an Fi-stopping time. As pointed above, the main feature of our model is

that the correlation among the defaults depends on, in addition to the common exogenous

factor X0, the past defaults through the process L̄, so that it has a self-exciting nature.

Moreover, since we model each τi rather than L̄ directly, our model is “bottom-up”.

When there is no confusion, for ψ = b, σ, λ and i = 1, 2, · · · , with a slight abuse of

notation we denote

ψ0(t, x0, α) := ψ0(t, ω, x0, α) := ψ0(t, B
0
·∧t(ω), x0, α),

ψi(t, x0, xi, α) := ψi(t, ω, x0, xi, α) := ψi(t, B
0
·∧t(ω), B

i
·∧t(ω), x0, xi, α).

(2.7)

Then clearly ψ0(·, x0, α) is F0-adapted and ψi(·, x0, xi, α) is Fi-adapted.

Remark 2.2 (i) If b0, σ0, bi, σi, λi do not depend on L̄, then our model becomes a standard

reduced form model where the defaults are conditionally independent, conditional on the

common factor X0, and it is straightforward to check that in this case λi is the Fi-intensity

of τi, in the sense that P{τi > t|F i
t} = exp{−

∫ t
0 λi(s,X

0
s , X

i
s)ds}, t ≥ 0; see, e.g., Bielecki

and Rutkowski (2002), Duffie and Singleton (2003).

(ii) In the general case when λi depends on L̄, λi is obviously no longer an Fi-adapted

process (hence cannot be an “Fi-intensity” of τi in the aforementioned sense). Due to the

self-exciting nature of our model, λi can be interpreted as the conditional intensity of τ i,

conditional on all the past defaults. See Proposition 3.3 for a more precise statement; see

also Jeanblanc and Song (2011a,b) for more on construction of default times with given

intensities.

2.3 The main results

Notice that the system (2.1), (2.4)–(2.6) is “circular”, and thus its well-posedness is by no

means obvious. Our first result, Theorem 3.2 below, is that this system is indeed well-posed.

We next characterize the limit process L̄∗ via a fixed point problem. We first conjecture

that, if exists, L̄∗ should be F0-adapted. Now, for an F0-adapted process α, by replacing L̄
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with α in the system (2.1), (2.4)–(2.6) we define

X0,α
t = x0 +

∫ t

0
b0(s,X

0,α
s , αs)ds+

∫ t

0
σ0(s,X

0,α
s , αs)dB

0
s ;

X i,α
t = xi +

∫ t

0
bi(s,X

0,α
s , Xi,α

s , αs)ds+

∫ t

0
σi(s,X

0,α
s , Xi,α

s , αs)dB
i
s,

Y i,α
t

△
=

∫ t

0
λi(s,X

0,α
s , Xi,α

s , αs)ds,

ταi
△
= inf

{
t ≥ 0 : Y i,α

t ≥ Ei

}
, i = 1, · · · , n;

L̄α
t

△
= L̄n,α △

=
1

n

n∑
i=1

Li
ταi
1{ταi ≤t}.

(2.8)

Clearly, given the information F0, processes (X i,α, Y i,α, ταi ), i = 1, · · · , n, are conditionally

independent; see Remark 2.2. Thus, under conditional probability P{ · |F0}, the standard

Law of Large Numbers should imply, modulo some technical conditions, that

L̄n,α
t − E{L̄n,α

t |F0
t } → 0, t ≥ 0. (2.9)

Now if L̄∗ = α, that is L̄n → α, one expects that the system (2.1), (2.4)–(2.6) converges to

the system (2.8) in certain sense. In particular, L̄n,α and L̄n should have the same limit,

that is, we should expect that the process α would have the following “fixed point” property:

αt = lim
n→∞

E{L̄n,α
t |F0

t }, t ≥ 0, (2.10)

provided that the limit and the fixed point α both exist.

In Theorem 4.9 below, we will provide some sufficient conditions so that the fixed point

problem (2.10) has a solution. Our main result of the paper, Theorem 2.11 below, proves

the Law of Large Numbers in our model. That is, it shows that if α solves the fixed point

problem (2.10), then under certain technical conditions, we have

lim
n→∞

E{|L̄n
t − αt|} = 0, ∀t. (2.11)

We finish this section by presenting a simple example in which L̄ is the average number

of defaults.

Example 2.3 Assume Li ≡ 1, λi = λ, ∀i, and λ is independent of X i (i.e., a “zero-factor”

scenario). Then, conditioning on the values of X0, all ταi ’s have the same (exponential)

distribution and the right-hand side in (2.10) is equal to

P
{
τα1 ≤ t

∣∣∣F0
t

}
= 1− e−Y α

t = 1− e−
∫ t
0 λ(s,X0,α

s ,αs)ds,
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and the equation (2.10) for α becomes

αt = 1− e−
∫ t
0 λ(s,X0,α

s ,αs)ds.

A simple calculation implies that α should satisfy the following ODE:

α′
t = (1− αt)λ(t,X

0
t , αt), α0 = 0. (2.12)

3 Well-posedness

In this section we verify that the system (2.1), (2.4)–(2.6) is indeed well-defined. In other

words, we show that, for each n ∈ N, there exists a unique solution (X0, {Xi, Y i}ni=1) that

satisfies (2.1), (2.4)–(2.6). For this purpose we impose the following technical conditions.

Assumption 3.1 (i) The mappings x0 7→ b0(t, ω, x0, α), σ0(t, ω, x0, α) are uniformly Lip-

schitz, uniformly in (t, ω, α); and the mappings xi 7→ bi(t, ω, x0, xi, α) and σ(t, ω, x0, xi, α)

are uniformly Lipschitz, uniformly in (t, ω, x0, α).

(ii) Let D0 ⊂ R denote domain of Li, that is, Li takes values in D0. There exists a

constant K > 0 such that, for any α ∈ D0, any i = 1, · · · , n, and any (t, ω, x0, xi),

|bi(t, ω, x0, 0, α)− bi(t, ω, 0, 0, α)|+ |σi(t, ω, x0, 0, α)− σi(t, ω, 0, 0, α)| ≤ K(1 + |x0|),

|λi(t, ω, x0, xi, α)− λi(t, ω, 0, 0, α)| ≤ K(1 + |x0|+ |xi|);

E
{∫ T

0
sup
α∈D0

[
|b0|2 + |σ0|2 + |bi|2 + |σi|2 + |λi|

]
(t, 0, 0, α)dt

}
<∞.

We then have the following theorem.

Theorem 3.2 Assume Assumptions 2.1 and 3.1 hold. Then for each n ∈ N, the system

(2.1), (2.4)–(2.6) admits a unique F-adapted solution (X0, {Xi, Y i}ni=1).

Proof. In this proof and in the sequel we denote by τ∗1 ≤ · · · ≤ τ∗n the order statistics of

stopping times τ1, · · · , τn. We construct a solution to the system in the following. It can

be seen from the construction that the solution is unique.

Notice that, if there is a solution, one must have L̄t = 0 for t < τ∗1 . We thus first

consider the following system:

X0,1
t = x0 +

∫ t

0
b0(s,X

0,1
s , 0)ds+

∫ t

0
σ0(s,X

0,1
s , 0)dB0

s ;

X i,1
t = xi +

∫ t

0
bi(s,X

0,1
s , X i,1

s , 0)ds+

∫ t

0
σi(s,X

0,1
s , Xi,1

s , 0)dBi
s, i = 1, · · · , n.
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This SDE obviously has a unique solution (X0,1, {Xi,1}ni=1) under Assumptions 2.1 and 3.1.

We can then define

Y i,1
t

△
=

∫ t

0
λi(s,X

0,1
s , Xi,1

s , 0)ds, τ1i
△
= inf

{
t ≥ 0 : Y i,1

t ≥ Ei
}
, i = 1, · · · , n;

L̄n,1
t

△
=

1

n

n∑
i=1

Li
τ1i
1{τ1i ≤t}.

Suppose that we have defined processes (X0,k, X i,k, Y i,k, L̄n,k) and stopping times τki

for i = 1, · · · , n. Now for k + 1, recalling that τk,∗k is the k-th order statistic of τk1 , · · · , τkn ,
we define for i = 1, · · · , n

(X0,k+1
t , Xi,k+1

t , Y i,k+1
t , L̄n,k+1

t )
△
= (X0,k

t , Xi,k
t , Y i,k

t , L̄n,k
t ), 0 ≤ t ≤ τk,∗k , (3.1)

and for t ≥ τk,∗k and i = 1, · · · , n,

X0,k+1
t = X0,k

τk,∗k

+

∫ t

τk,∗k

b0(s,X
0,k+1
s , L̄n,k

τk,∗k

)ds+

∫ t

τk,∗k

σ0(s,X
0,k+1
s , L̄n,k

τk,∗k

)dB0
s ;

Xi,k+1
t = X i,k

τk,∗k

+

∫ t

τk,∗k

bi(s,X
0,k+1
s , Xi,k+1

s , L̄n,k

τk,∗k

)ds+

∫ t

τk,∗k

σi(s,X
0,k+1
s , Xi,k+1

s , L̄n,k

τk,∗k

)dBi
s;

Y i,k+1
t

△
= Y i,k

τk,∗k

+

∫ t

τk,∗k

λi(s,X
0,k+1
s , Xi,k+1

s , L̄n,k

τk,∗k

)ds;

τk+1
i

△
= inf

{
t ≥ 0 : Y i,k+1

t ≥ Ei
}
, L̄n,k+1

t
△
=

1

n

n∑
i=1

Li
τk+1
i

1{τk+1
i ≤t}.

This defines τk+1
i , i = 1, , · · · , n. By (3.1), it is clear that

τk+1,∗
j = τk,∗j , j = 1, · · · , k. (3.2)

Repeating the same procedure, we may define (X0,n, Xi,n, Y i,n, L̄n,n) and τni for i =

1, · · · , n. Finally, we define

(X0
t , X

i
t , Y

i
t , L̄t)

△
= (X0,n

t , Xi,n
t , Y i,n

t , L̄n,n
t ), 0 ≤ t ≤ τn,∗n , (3.3)

and for t > τn,∗n ,

X0
t = X0

τn,∗
n

+

∫ t

τn,∗
n

b0(s,X
0
s , L̄τn,∗

n
)ds+

∫ t

τn,∗
n

σ0(s,X
0
s , L̄τn,∗

n
)dB0

s ;

Xi
t = Xi

τn,∗
n

+

∫ t

τn,∗
n

bi(s,X
0
s , X

i
s, L̄τn,∗

n
)ds+

∫ t

τn,∗
n

σi(s,X
0
s , X

i
s, L̄τn,∗

n
)dBi

s;

Y i
t

△
= Y i

τn,∗
n

+

∫ t

τn,∗
n

λi(s,X
0
s , X

i
s, L̄τn,∗

n
)ds;

L̄t
△
= L̄τn,∗

n
.
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This defines (X0
t , X

i
t , Y

i
t , L̄t) for t ≥ 0. Moreover, define τi by (2.4), , i = 1, · · · , n. One can

check straightforwardly that (X0
t , X

i
t , Y

i
t , L̄t, τi) satisfies the system (2.1), (2.4)–(2.6), and

τ∗j = τn,∗j = τk,∗j , 1 ≤ j ≤ k ≤ n. (3.4)

The next proposition gives the conditional distribution of stopping times τk+1
i , when the

previous defaults are known. We say that random variables ξi are conditionally independent

on D if ξi1D are conditionally independent.

Proposition 3.3 Assume Assumptions 2.1 and 3.1 hold, ans let i1, · · · , ik be given. In the

framework of Theorem 3.2, and recalling (3.4), denote

Dk
△
= {τ∗1 = τki1 , · · · , τ

∗
k = τkik}, Gk

t
△
=

( k∨
l=1

F il
τ∗k+t

)∨( ∨
j ̸=i1,··· ,ik

F j
τ∗k

)
. (3.5)

Then, for j ̸= i1, · · · , ik and t ≥ 0,

P
{
τk+1
j > τ∗k + t

∣∣∣Gk
t , Dk

}
= E

{
exp(Y j,k+1

τ∗k
− Y j,k+1

τ∗k+t )
∣∣∣Gk

t , Dk

}
on Dk. (3.6)

Moreover, conditional on Gk
t ∨ σ(Dk), the random vectors (Xj,k+1

τ∗k+t , Y
j,k+1
τ∗k+t ,1{τk+1

j >τ∗k+t}),

j ̸= i1, · · · , ik, are conditionally independent on Dk, and consequently,

P
{
τ∗k+1 > τ∗k + t

∣∣∣Gk
t , Dk

}
= E

{
exp

( ∑
j ̸=i1,··· ,ik

(Y j,k+1
τ∗k

− Y j,k+1
τ∗k+t )

)∣∣∣Gk
t , Dk

}
on Dk. (3.7)

Proof. (i) We first prove (3.6). For arbitrarily given t1 < · · · < tk, denote

D̃k
△
= Dk ∩

{
τ∗1 = t1, · · · , τ∗k = tk

}
, (3.8)

and define

(X̃0,1, X̃i,1, Ỹ i,1)
△
= (X0,1, Xi,1, Y i,1), and L̃n,1

t1

△
=

1

n
Li1
t1
.

For j = 1, · · · , k, define (X̃0,j+1
t , X̃i,j+1

t , Ỹ i,j+1
t )

△
= (X̃0,j

t , X̃i,j
t , Ỹ i,j

t ) for t ≤ tj , and for t ≥ tj ,

X̃0,j+1
t = X̃0,j

tj
+

∫ t

tj

b0(s, X̃
0,j+1
s , L̃n,j

tj
)ds+

∫ t

tj

σ0(s, X̃
0,j+1
s , L̃n,j

tj
)dB0

s ;

X̃i,j+1
t = X̃i,j

tj
+

∫ t

tj

bi(s, X̃
0,j+1
s , X̃ i,j+1

s , L̃n,j
tj

)ds+

∫ t

tj

σi(s, X̃
0,j+1
s , X̃ i,j+1

s , L̃n,j
tj

)dBi
s;

Ỹ i,j+1
t

△
= Ỹ i,j

tj
+

∫ t

tj

λi(s, X̃
0,j+1
s , X̃ i,j+1

s , L̃n,j
tj

)ds;
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where, for j > 1,

L̃n,j
tj

△
= L̃n,j−1

tj−1
+

1

n
L
ij
tj
.

Then, it is clear that

(X0,k+1, Xi,k+1, Y i,k+1) = (X̃0,k+1, X̃i,k+1, Ỹ i,k+1) on D̃k. (3.9)

Note that, for any i and t,

{τk+1
i > t} = {Ei > Y i,k+1

t },

{τk+1
i = t} =

{
Y i,k+1
t = Ei and Y i,k+1

s < Ei for all s < t
}
.

Then

D̃k =
{
τk+1
i1

= t1, · · · , τk+1
ik

= tk, Y
i,k+1
tk

< Ei, i ̸= i1, · · · , ik
}

=
{
τk+1
i1

= t1, · · · , τk+1
ik

= tk, Ej > Y j,k+1
tk

, Ei > Y i,k+1
tk

, i ̸= i1, · · · , ik, j
}
.

and, for each j,

Gk
t ∨ σ

{
τk+1
i1

= t1, · · · , τk+1
ik

= tk, Ei > Y i,k+1
tk

, i ̸= i1, · · · , ik, j
}

⊆ G̃k,j
t

△
=

( n∨
i=1

F i
tk+t

)∨(∨
i̸=j

σ(Ei)
)
.

Then, by (3.9), on D̃k we have

P
{
τk+1
j > τ∗k + t

∣∣∣Gk
t , D̃k

}
= E

{
P
{
Ej > Y j,k+1

tk+t

∣∣∣G̃k,j
t , Ej > Y j,k+1

tk

}∣∣∣Gk
t , D̃k

}
= E

{
P
{
Ej > Ỹ j,k+1

tk+t

∣∣∣G̃k,j
t , Ej > Ỹ j,k+1

tk

}∣∣∣Gk
t , D̃k

}
(3.10)

Given G̃k,j
t and Ej > Ỹ j,k+1

tk
, one can evaluate the conditional probability of the set Ej >

Ỹ j,k+1
tk+t in (3.10) as

P
{
Ej > Ỹ j,k+1

tk+t

∣∣∣G̃k,j
t , Ej > Ỹ j,k+1

tk

}
= E

{
exp(Ỹ j,k+1

tk
− Ỹ j,k+1

tk+t )
∣∣∣G̃k,j

t , Ej > Ỹ j,k+1
tk

}
.

Thus, by (3.9) again, we can continue from (3.10) to get

P
{
τk+1
j > τ∗k + t

∣∣∣Gk
t , D̃k

}
= E

{
E
{
exp(Ỹ j,k+1

tk
− Ỹ j,k+1

tk+t )
∣∣∣G̃k,j

t , Ej > Ỹ j,k+1
tk

}∣∣∣Gk
t , D̃k

}
= E

{
E
{
exp(Y j,k+1

tk
− Y j,k+1

tk+t )
∣∣∣G̃k,j

t , Ej > Y j,k+1
tk

}∣∣∣Gk
t , D̃k

}
= E

{
exp(Y j,k+1

tk
− Y j,k+1

tk+t )
∣∣∣Gk

t , D̃k

}
. (3.11)

Since t1, · · · , tk are arbitrary, (3.6) follows.

10



(ii) By the arguments in (i), clearly L̄tk1D̃k
,Xj,k+1

tk
, Y j,k+1

tk
are all Gk

0∨σ(D̃k)-measurable,

j ̸= i1, · · · , ik. Then conditional on the filtration {Gk
t ∨ σ(D̃k), t ≥ 0}, the processes

{Xj,k+1
tk+· , j ̸= i1, · · · , ik} are conditionally independent on D̃k. Thus so are {Y j,k+1

tk+· , j ̸=
i1, · · · , ik} and therefore all τk+1

j ’s are conditionally independent on D̃k. Since t1, · · · , tk
are arbitrary, we see that (Xj,k+1

τ∗k+· , Y
j,k+1
τ∗k+· , τ

k+1
j ), j ̸= i1, · · · , ik, are conditionally indepen-

dent on Dk, conditional on the filtration {Gk
t ∨ σ(Dk), t ≥ 0}. Since τ∗k+1 = τk+1,∗

k+1 =

min{τk+1
j : j ̸= i1, · · · , ik} on the set Dk, (3.7) follows from (3.6) immediately.

We conclude this section by some monotonicity properties of the system (2.8).

Assumption 3.4 b0 is decreasing in α; for all i, bi is increasing in x0 and decreasing in

α; λi is decreasing in x0, xi and increasing in α; Li ≥ 0 and is decreasing in t.

Lemma 3.5 Assume that Assumptions 2.1, 3.1 and 3.4 hold. Then for any F0-adapted

process α taking values in D0, the system (2.8) is well-posed. Moreover, ταi is decreasing in

α, i = 1, · · · , n, and L̄α is increasing in t and α.

Proof. Under Assumptions 2.1 and 3.1, it is clear that the system (2.8) is well-posed. Since

Li ≥ 0, we see immediately that L̄α is increasing in t.

We now assume α1 ≤ α2. By the standard comparison theorem of SDEs one can easily

show that

X0,α1 ≥ X0,α2
, Xi,α1 ≥ X i,α2 , Y i,α1 ≤ Y i,α2 .

It follows immediately that τα1
i ≥ τα2

i . Since Li is decreasing in t, we see that L̄α1 ≤ L̄α2 .

Remark 3.6 (i) If we interpret X i as the performance of the i-th firm, then the monotonic-

ity assumptions in Assumption 3.4 imply that the n firms are ”partners” and are positively

correlated to the common factor X0, and thus they are all negatively correlated to the

average past loss L̄.

(ii) Assumption 3.4 can be replaced by

b0 is increasing in α; and for all i, bi is increasing in x0 and α;

λi is decreasing in x0, xi and α; Li ≥ 0 and is decreasing in t.

In this case the firms are ”competitors”, and all the results in this paper will still hold true,

after some obvious modifications.
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4 The Fixed Point Theorem

Recall that the fixed point problem (2.10) provides the candidate for the limit process L̄∗.

We first have the following obvious result:

Proposition 4.1 In the setting of Example 2.3, if λ is bounded and uniformly Lipschitz

continuous in α, then ODE (2.12) has a unique solution α taking values in [0, 1], and thus

(2.10) has a unique fixed point.

In the rest of this section we consider a more general and non-trivial case, in which the

fixed point argument works. First, recall the coefficients in (2.5) and (2.6). For simplicity,

we assume in this section that

xi = x, bi = b, σi = σ, λi = λ, i ≥ 1. (4.1)

We next introduce assumptions on the loss processes Li. Since Li is Fi-adapted, we can

write

Li
t = φi(t, B

0
·∧t, B

i
·∧t), t ≥ 0, i = 1, 2, · · · (4.2)

where each φi : R+ × C([0,∞);R)2 → R is a measurable function. The simplest case is

the one in which all φi’s are identical. However, we may consider a more general case

in which there is a classification over the possible level of losses. The basic idea is that

there are different loss types, known to the public, and each firm’s loss at default falls into a

particular type with a certain “frequency.” The following definition, albeit technical, reflects

the essence of this idea in a general form.

Definition 4.2 Let φ
△
= {φ(θ)}θ∈[0,1] be a family of measurable mappings φ(θ) : R+ ×

C(R+)
2 → R and µ a probability measure on [0, 1]. We say the sequence {φi, i ≥ 1} has

distribution (φ, µ) if, for any ε > 0 and T > 0, there exist k = k(ε, T ), disjoint subsets

Θ1, · · · ,Θk ⊂ [0, 1], and disjoint subsets D1, · · · , Dk ⊂ N such that

µ
(
[0, 1]

\
(Θ1 ∪ · · · ∪Θk)

)
< ε;

sup
i∈Dj

∥φi −
1

µ(Θj)

∫
Θj

φ(θ)dµ(θ)∥T,∞ < ε, j = 1, · · · , k; (4.3)

lim
n→∞

∣∣∣Dj ∩ {1, · · · , n}
∣∣∣

n
= µ(Θj), j = 1, · · · , k.

Here ∥φ∥T,∞
△
= sup

{
|φ(t,x0

·∧t,x·∧t) : 0 ≤ t ≤ T,x0,x ∈ C(R+)
}
.
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To illustrate the idea behind Definition 4.2, we provide several examples.

Example 4.3 (Singleton case) Let θ0 ∈ [0, 1] and µ({θ0}) = 1. Then {φi, i ≥ 1} has

distribution (φ, µ) if and only if there exists a set D ⊂ N such that

lim
n→∞

∣∣∣D ∩ {1, · · · , n}
∣∣∣

n
= 1 and lim

i∈D,i→∞
∥φi − φ(θ0)∥T,∞ = 0 for any T > 0.

The simplest case for which {φi, i ≥ 1} has distribution (φ, µ) in this case is of course when

φi = φ(θ0) for all i ≥ 1. That is, there is only one type of loss.

Example 4.4 (Discrete case) Let {θk, k ≥ 1} ⊂ [0, 1] and µ({θk, k ≥ 1}) = 1. Then

{φi, i ≥ 1} has distribution (φ, µ) if and only if there exist disjoint subsets Dk ⊂ N, k ≥ 1,

such that

lim
n→∞

∣∣∣Dk ∩ {1, · · · , n}
∣∣∣

n
= µ(θk) and lim

i∈Dk,i→∞
∥φi − φ(θk)∥T,∞ = 0, T > 0, k ≥ 1.

In particular, if k = 2, µ(θ1) = µ(θ2) =
1
2 , then we could set φi = φ(θ1) when i is odd

and φi = φ(θ2) when i is even, so that {φi, i ≥ 1} has distribution (φ, µ).

Example 4.5 (Continuous case) Let µ be the Lebesgue measure on [0, 1] and φ(θ) =

θφ0, where φ0 is a given mapping: R+ × C(R+)
2 → R. For each n and 2n−1 ≤ i < 2n,

assume φi = (i21−n − 1)φ0. Then one can easily check that {φi, i ≥ 1} has distribution

(φ, µ).

We will need the following assumptions on the coefficients:

Assumption 4.6 (i) (4.1) holds and σ0(s, x0, α) = σ0(s, x0), σ(s, x0, xi, α) = σ(s, xi);

(ii) (4.2) holds and {φi, i ≥ 1} has distribution (φ, µ), in the sense of Definition 4.2;

(iii) there exists a constant K > 0 such that |φi| ≤ K and |λ| ≤ K.

We note that under Assumption 4.6 (i), the system (2.8) now becomes:

X0,α
t = x0 +

∫ t

0
b0(s,B

0
·∧s, X

0,α
s , αs)ds+

∫ t

0
σ0(s,B

0
·∧s, X

0,α
s )dB0

s ;

X i,α
t = x+

∫ t

0
b(s,B0

·∧s, B
i
·∧s, X

0,α
s , Xi,α

s , αs)ds+

∫ t

0
σ(s,B0

·∧s, B
i
·∧s, X

i,α
s )dBi

s;

Y i,α
t

△
=

∫ t

0
λ(s,B0

·∧s, B
i
·∧s, X

0,α
s , Xi,α

s , αs)ds; ταi
△
= inf

{
t ≥ 0 : Y i,α

t ≥ Ei
}
.

(4.4)

The following lemma is useful.
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Lemma 4.7 Assume Assumptions 2.1, 3.1 and 4.6 hold, and let α be an F0-adapted process

taking values in D0
△
= [−K,K]. Denote

φ̄
△
=

∫ 1

0
φ(θ)dµ(θ); (4.5)

Γt(α)
△
= E

{∫ t

0
φ̄(s,B0

·∧s, B
1
·∧s)λ(s,B

0
·∧s, B

1
·∧s, X

0,α
s , X1,α

s , αs)e
−Y 1,α

s ds
∣∣∣F0

t

}
. (4.6)

Then

(i) ταi are conditionally i.i.d., conditional on F0, and

lim
n→∞

E{|L̄n,α
t − Γt(α)|} = 0, (4.7)

(ii) Moreover, if Assumption 3.4 also holds, then Γ(α) is continuous and increasing in t,

increasing in α, and satisfies 0 ≤ Γt(α) ≤ K, a.s.

(iii) The process Γ(α) can be written as

Γt(α) =

∫ t

0
E
{
φ̄(s,B0

·∧s, B
1
·∧s)λ(s,B

0
·∧s, B

1
·∧s, X

0,α
s , X1,α

s , αs)e
−Y 1,α

s

∣∣∣F0
s

}
ds. (4.8)

Proof. (i) By our assumptions, it is readily seen that {(Bi, Xi,α, Y i,α, ταi )}ni=1 are con-

ditionally i.i.d., conditional on F0
t . So it suffices to prove (4.7).

For any t > 0 and ε > 0, let k, Θj , Dj , j = 1, · · · k, be as in Definition 4.2. Denote

Θk+1
△
= [0, 1]\(Θ1 ∪ · · · ∪Θk), Dk+1

△
= N\(D1 ∪ · · · ∪Dk), Dn

j
△
= Dj ∩ {1, · · · , n},

and

φ̄j
△
=

1

µ(Θj)

∫
Θj

φ(θ)dµ(θ).

Note that, by denoting φi(s)
△
= φi(s,B

0
·∧s, B

i
·∧s),

L̄n,α
t =

1

n

n∑
i=1

Li
ταi
1{ταi ≤t} =

1

n

n∑
i=1

φi(τ
α
i )1{ταi ≤t} =

1

n

k+1∑
j=1

∑
i∈Dn

j

φi(τ
α
i )1{ταi ≤t}

=
1

n

[ k∑
j=1

∑
i∈Dn

j

φ̄j(τ
α
i )1{ταi ≤t} +

k∑
j=1

∑
i∈Dn

j

[φi(τ
α
i )− φ̄j(τ

α
i )]1{ταi ≤t} +

∑
i∈Dn

k+1

φi(τ
α
i )1{ταi ≤t}

]
.
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and that

Γt(α) = E
{
φ̄(τα1 )1{τα1 ≤t}

∣∣∣F1
t

∣∣∣F0
t

}
= E

{
φ̄(τα1 )1{τα1 ≤t}

∣∣∣F0
t

}
= E

{[ k+1∑
j=1

φ̄j(τ
α
1 )µ(Θj)

]
1{τα1 ≤t}

∣∣∣F0
t

}

=

k∑
j=1

µ(Θj)E
{
φ̄j(τ

α
j )1{ταj ≤t}

∣∣∣F0
t

}
+ µ(Θk+1)E

{
φ̄k+1(τ

α
1 )1{τα1 ≤t}

∣∣∣F0
t

}
.

Since |φi| ≤ K, it is obvious that |φ̄i| ≤ K. Then by (4.3) we have

1

n

k∑
j=1

∑
i∈Dn

j

|φi(τ
α
i )− φ̄j(τ

α
i )|1{ταi ≤t} ≤ ε;

1

n

∑
i∈Dn

k+1

|φi(τ
α
i )| ≤

K|Dn
k+1|
n

→ Kµ(Θk+1) ≤ Kε;

µ(Θk+1)|φ̄k+1(τ
α
1 )| ≤ Kµ(Θk+1) ≤ Kε.

Moreover, for each j = 1, · · · , k, by the standard Law of Large Numbers we have

lim
n→∞

1

n

∑
i∈Dn

j

φ̄j(τ
α
i )1{ταi ≤t} = lim

n→∞

|Dn
j |
n

1

|Dn
j |

∑
i∈Dn

j

φ̄j(τ
α
i )1{ταi ≤t}

= µ(Θj)E
{
φ̄j(τ

α
1 )1{τα1 ≤t}

∣∣∣F0
t

}
.

Thus

lim
n→∞

∣∣∣L̄n,α
t − Γt(α)

∣∣∣ ≤ (2K + 1)ε.

Since ε is arbitrary, we prove (4.7).

(ii) It follows directly from Lemma 3.5 and (4.7) that Γ(α) is increasing in t and α, and

0 ≤ Γt(α) ≤ K. Moreover, denote

γt(α)
△
= φ̄(t, B0

·∧t, B
1
·∧t)λ(t, B

0
·∧t, B

1
·∧t, X

0,α
t , X1,α

t , αt)e
−Y 1,α

t .

For any t and ε > 0,∣∣∣Γt+ε(α)− Γt(α)
∣∣∣

≤
∣∣∣E{∫ t+ε

t
γs(α)ds|F0

t+ε

}∣∣∣+ ∣∣∣E{∫ t

0
γs(α)ds|F0

t+ε

}
− E

{∫ t

0
γs(α)ds|F0

t

}∣∣∣
≤ K2ε+

∣∣∣E{∫ t

0
γs(α)ds|F0

t+ε

}
− E

{∫ t

0
γs(α)ds|F0

t

}∣∣∣.
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Since the filtration F0 is continuous, sending ε→ 0 we obtain immediately that limε→0 Γt+ε(α) =

Γt(α). Similarly, one can show that limε→0 Γt−ε(α) = Γt(α). Therefore, Γ(α) is continuous

in t.

(iii) First, by the Fubini theorem we can write (4.6) as

Γ(α)t = E
{∫ t

0
γs(α)ds

∣∣∣F0
t

}
=

∫ t

0
E
{
γs(α)

∣∣∣F0
t

}
ds.

Since for each s ∈ [0, t], γs(α) is Fs-measurable, and F0
t = F0

s ∨F0
s,t, where F0

s,t
△
=

∨
s≤u≤tF0

u

is independent of Fs, it can be fairly easily checked that

E{γs(α)|F0
t } = E{γs(α)|F0

s ∨ F0
s,t} = E{γs(α)|F0

s },

and (4.8) follows.

Remark 4.8 The condition (4.1) is to ensure that ταi are conditionally i.i.d. and thus one

may apply the standard Law of Large Numbers. It can be weakened slightly if one applies

generalized Law of Large Numbers by using the Linderberg condition.

We conclude this section with the following important result.

Theorem 4.9 Assume Assumptions 2.1, 3.1, 3.4, and 4.6 hold. Then there exists lF0-

adapted process such that α = Γ(α).

Proof. We will apply Zorn’s lemma to prove the theorem. First, denote

L
△
=

{
α : F0-adapted, increasing, càdlàg , and 0 ≤ α ≤ K

}
.

By Lemma 4.7, we see that Γ(α) ∈ L for any α ∈ L . We introduce a partial order “≼” in

L , by α1 ≼ α2 if and only if α1
t ≤ α2

t , t ≥ 0, P-a.s. Now consider the set

L0
△
= {α ∈ L : α ≤ Γ(α)}.

Obviously 0 ∈ L0, so L0 is not empty.

Assume that {αθ}θ∈Θ is a totally ordered subset of L0. Define α̂r
△
= esssupθ∈Θ α

θ
r for

all r ∈ Q+. Then clearly α̂r is increasing in r, a.s. Define

α̂t
△
= lim

r∈Q+∩(t,∞),r↓t
α̂r, t ≥ 0.

Then it is easy to check that α̂ ∈ L. Since αθ is càdlàg , we have α̂t ≥ αθ
t , t ≥ 0, a.s. for

all θ ∈ Θ. Furthermore, since Γ is increasing in α, Γ(α̂) ≥ Γ(αθ) ≥ αθ for all θ. Then
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Γr(α̂) ≥ α̂r, r ∈ Q+, a.s. Since Γ(α̂) is continuous, we have Γt(α̂) ≥ α̂t for all t ≥ 0, a.s.

Thus α̂ ∈ L0, and therefore, α̂ is an upper bound of {αθ}θ∈Θ in L0.

Now applying Zorn’s lemma we conclude that L0 has a maximum point α∗ in L0. We

claim that α∗ = Γ(α∗). Indeed, suppose that the equality fails. Then there exists ε > 0

such that P(τ1 <∞) > 0, where τ1
△
= inf

{
t ≥ 0 : Γt(α

∗) ≥ α∗
t + ε

}
is an F0-stopping time.

Let τ2
△
= inf{t ≥ τ1 : α∗

t ≥ α∗
τ1 + ε

}
be another F0-stopping time taking values in [0,∞],

and define

α̃∗
t

△
=

{
α∗
t , t < τ1 or t ≥ τ2;

α∗
τ1 + ε, τ1 ≤ t < τ2.

Since α∗ is càdlàg , we see that τ2 > τ1 on {τ1 <∞}, thus

α∗ ≼ α̃∗ and α∗ ̸= α̃∗. (4.9)

On the other hand, by the definition of τ2 we see that α̃∗ is still increasing, then it is clear

that α̃∗ ∈ L . Moreover, since Γ is increasing in both α and t, then for t < τ1 or t ≥ τ2, we

have Γt(α̃
∗) ≥ Γt(α

∗) ≥ α∗
t , and for t ∈ [τ1, τ2), Γt(α̃

∗) ≥ Γt(α
∗) ≥ Γτ1(α

∗) ≥ α∗
τ1 + ε = α̃∗

t .

This implies that α̃∗ ∈ L0, in contradiction with (4.9) and the assumption that α∗ is a

maximum point of L0.

5 Potential Applications

In this section we present some potentially useful applications under the “i.i.d.” framework.

To the best of our knowledge, these cases have not been fully analyzed in the literature.

5.1 Pricing a single name credit derivative

Suppose we are interested in pricing a credit derivative written on one firm, but the default

intensity of the firm, λ, depends on the average number of defaults of many firms, as in our

model. If our assumptions hold and that number is approximated by the process αt, then

we can find the price by using λ(t,X0
t , αt).

Specifically, consider the setting of Example 2.3. Recall that in this case the fixed point

can be determined by a randomized ODE (2.12):

αt =

∫ t

0
(1− αs)λ(s,X

0
s , αs)ds. (5.1)

Let us assume further that λ is linear in α, that is,

λ(t,X0
t , αt) = A(t,X0

t ) +B(t,X0
t )αt,
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where A and B are continuous functions, and are uniformly Lipschitz in x. Then the ODE

(5.1) becomes (path-by-path) a Riccati equation:

α′
t = (1− αt)λ(t,X

0
t , αt) = P (t,X0

t ) +Q(t,X0
t )αt +R(t,X0

t )α
2
t ,

where P = A, Q = B −A, and R = B. Since the equation clearly has a particular solution

αt ≡ 1, the general solution can be written as

αt = 1 + 1/vt

where vt solves the linear equation

v′t = [A(t,X0
t ) +B(t,X0

t )]vt +B(t,X0
t ).

Since α0 = 0, we have v0 = −1. Solving this ODE we obtain

vt = −e
∫ t
0 psds +

∫ t

0
e
∫ t
s prdrB(s,X0

s )ds, t ≥ 0,

where p
△
= A + B. The process α is thus explicitly found, as a functional of X0, and we

then face a standard problem in credit derivatives pricing, in which the (limiting) intensity

only depends on the factor X0.

If we further assume that A and B are constant, it then follows that

αt = 1− A+B

Ae(A+B)t +B

Thus, the default intensity can be approximated by

λ̂t = A+Bαt = (A+B)

[
1− B

Ae(A+B)t +B

]
We have then shown the following: If the intensity is of the form λt = A+BNt where Nt is

the average number of defaults of many firms, then we can price derivatives which depend

on λ by replacing it by simple deterministic process λ̂.

5.2 Finding expected loss

We now consider a problem of computing the expected loss of a portfolio of a large number

of defaultable loans, for example credit card customers. We assume that the loss of entity

i is given by (4.2). According to (4.6) and (4.8), we expect to have

αt = E
{∫ t

0
φ̄(s,B0

·∧s, B
1
·∧s)λ(s,B

0
·∧s, B

1
·∧s, X

0,α
s , X1,α

s , αs)e
−Y 1,α

s ds
∣∣∣F0

t

}
=

∫ t

0
E{φ̄(s,B0

·∧s, B
1
·∧s)λ(s,B

0
·∧s, B

1
·∧s, X

0,α
s , X1,α

s , αs)e
−Y 1,α

s |F0
s }ds. (5.2)
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Let us assume further that

λ(· · · ) = λ0(t, B
0
·∧t, αt) + λ1(t, B

0
·∧t, B

i
·∧t).

Then, we can write (5.2) as

αt =

∫ t

0

[
Fsλ0(s,B

0
·∧s, αs) +Gs

]
e−

∫ s
0 λ0(u,B0

·∧s,αu)duds,

where

Fs
△
= E

{
φ̄(s,B0

·∧s, B
1
·∧s)e

−
∫ s
0 λ1(u,B0

·∧s,B
1
·∧s)du

∣∣∣F0
s

}
,

Gs
△
= E

{
φ̄(s,B0

·∧s, B
1
·∧s)λ1(s,B

0
·∧s, B

1
·∧s)e

−
∫ s
0 λ1(u,B0

·∧s,B
1
·∧s)du

∣∣∣F0
s

}
.

Or equivalently, denoting β0t (α)
△
= e−

∫ t
0 λ0(u,B0

·∧s,αu)du,

α′
t = [Ftλ0(t, B

0
·∧s, αt) +Gt]β

0
t (α). (5.3)

If we assume, in addition, that

λ0(t, B
0
·∧t, αt) = λ̄0(t, B

0
·∧t) +R(t, B0

·∧t)αt = It +Rtαt,

then (5.3) becomes

α′
t = [(FtIt +Gt) + FtRtαt]Htβt(α) = [F̃t + R̃tαt]βt(α), (5.4)

where βt(α) = e−
∫ t
0 Rsαsds, and

Ht = e−
∫ t
0 Isds, F̃t = (FtIt +Gt)Ht, R̃t = FtRtHt.

Differentiating on both sides of (5.4) and using (5.3) we obtain the ODE for α:

α′′
t = {[F̃ ′

t + R̃′
tαt + R̃tα

′
t]− [F̃t + R̃tαt]Rtαt}βt(α)

=
[R̃tα

′
t + (R̃′

t + F̃tRt)αt + R̃tRtα
2
t + F̃ ′

t ]α
′
t

F̃t + R̃tαt

. (5.5)

Moreover, by (5.2) and (5.4) we have

α0 = 0, α′
0 = F̃0 = F0I0 +G0 = φ̄(0, 0, 0)I0 +G0. (5.6)

The equation (5.5) with initial conditions (5.6) is a non-linear second order ODE, which

in general can only be solved numerically.

To recap, we have shown that if we impose technical conditions to guarantee that the

limiting average loss is indeed equal to αt, then we should be able to compute this limiting

loss, for all times t, in this fairly complex model for individual losses.
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6 The Law of Large Numbers

In this section we present our main result. The aim is to show that in our strongly correlated

self-exciting model, the Law of Large Numbers still holds, and the limit will be a fixed point

discussed in the previous sections. Since the proof is quite lengthy, we defer a part of the

proof to the next section.

To begin with we strengthen the technical conditions:

Assumption 6.1 (i) σ0(t, x0, α) = σ0(t), σi(t, x0, xi, α) = σi(t);

(ii) b0, bi, λi are Lipschitz continuous in x0, xi, uniformly in (t, ω, α), and Li is Lipschitz

continuous in t, with a common Lipschitz constant K;

(iii) b0, bi, λi are Lipschitz continuous in α, uniformly in (t, ω, x0, xi), with a common

Lipschitz constant Λ0;

(iv) 0 < Λ1 ≤ λi ≤ Λ2; 0 ≤ Li ≤ Λ3;

(v) Λ0 ≤
Λ2
1

3Λ2Λ3
.

Remark 6.2 The condition (v) above implies that the system is ”weakly” correlated to

the average loss L̄.

In this and next section, we denote by C a generic constant which depends only on the

constants K, Λi, i = 0, 1, 2, 3 in Assumption 6.1, and it may vary from line to line. We

emphasize in particular that C is independent of n. Moreover, we denote by Cε (resp. Cε,T )

if the constant depends additionally on ε (resp. ε, T ).

The main result of this paper is the following.

Theorem 6.3 Assume Assumptions 2.1, 3.1, 3.4, and 6.1 hold. If the fixed point problem

(2.10) has an F0-adapted solution α satisfying

lim
n→∞

E
{
|L̄n,α

t − αt|
}
= 0. (6.1)

Then the Law of Large Numbers (2.11) holds.

As a direct consequence of Theorems 4.9 and 6.3, and (4.7), we have

Corollary 6.4 Assume Assumptions 2.1, 3.1, 3.4, 4.6, and 6.1 hold. Let α be the solution

to the fixed point problem: α = Γ(α). Then the Law of Large Numbers (2.11) holds.

Before we prove Theorem 6.3, let us make a quick analysis. We fix some T > 0 and

consider t ≤ T . First recall (X0,α, Xi,α, Y i,α, , ταi , L̄
α) in (2.8). Since

|L̄t − αt| ≤ |L̄t − L̄α
t |+ |L̄α

t − αt|, (6.2)
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by (6.1) it suffices to analyze the convergence of E
{
|L̄t − L̄α

t |
}
. Notice that

E
{
|L̄t − L̄α

t |
}
≤ 1

n

n∑
i=1

Ii where Ii
△
= E{|Lτi1{τi≤t} − Lταi

1{ταi ≤t}|
}
. (6.3)

Without loss of generality we only estimate In. Note that

In ≤ CE
{
|τn − ταn |1{τn≤t,ταn≤t} + 1{τn<t<ταn } + 1{ταn<t<τn}

}
. (6.4)

Therefore a crucial step is then to estimate

E{1{τn<t<ταn }} = P{τn < t < ταn } = P{Y n
t > En > Y α,n

t },
E{1{ταn<t<τn}} = P{ταn < t < τn} = P{Y α,n

t > En > Y n
t }.

(6.5)

The main difficulty here is that Y α,n, Y n, and En are not independent in general. But

without knowing their joint distribution it is difficult to estimate these probabilities. We

therefore introduce an approximating system, in which adding a new (n-th) “name” each

time n increases, we use the bounds on the underlying processes, so that the probabilities

in (6.5) can be estimated. To be more precise, let us consider the following approximating

losses. For i = 1, · · · , n,

X0,1
t = x0 +

∫ t

0
b0(s,X

0,1
s , L̂1

s)ds+

∫ t

0
σ0(s)dB

0
s ;

X i,1
t = xi +

∫ t

0
bi(s,X

0,1
s , Xi,1

s , L̂1
s)ds+

∫ t

0
σi(s)dB

i
s;

Y i,1
t

△
=

∫ t

0
λi(s,X

0,1
s , Xi,1

s , L̂1
s)ds;

τ1i
△
= inf{t : Y i,1

t ≥ Ei}, L̂1
t

△
=

1

n

n−1∑
i=1

Li
τ1i
1{τ1i ≤t};

and

X0,2
t = x0 +

∫ t

0
b0(s,X

0,2
s , L̂2

s)ds+

∫ t

0
σ0(s)dB

0
s ;

Xi,2
t = xi +

∫ t

0
bi(s,X

0,2
s , Xi,2

s , L̂2
s)ds+

∫ t

0
σi(s)dB

i
s;

Y i,2
t

△
=

∫ t

0
λi(s,X

0,2
s , Xi,2

s , L̂2
s)ds;

τ2i
△
= inf{t : Y i,2

t ≥ Ei}, L̂2
t

△
=

Λ3

n
+

1

n

n−1∑
i=1

Li
τ2i
1{τ2i ≤t}.

We emphasize that L̂1 and L̂2 do not involve τ1n, τ
2
n. Consequently, except for τ1n, τ

2
n, the

above systems are now independent of En. The following theorem is essential for our

analysis. We defer its proof to the next section.
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Theorem 6.5 Assume Assumptions 2.1, 3.1, 3.4, and 6.1 hold. Then, for i = 1, · · · , n, it
holds that,

L̂1
t ≤ L̄t ≤ L̂2

t , X
0,1
t ≥ X0

t ≥ X0,2
t , X i,1

t ≥ Xi
t ≥ X i,2

t , Y i,1
t ≤ Y i

t ≤ Y i,2
t , τ1i ≥ τi ≥ τ2i .(6.6)

Moreover, for any T > 0, there exist constants ε = εT ∈ [0, 12) and CT > 0 such that

E
{
∆Xi

t +∆Y i
t

}
≤ CT

nε lnn
, ∀t ∈ [0, T ]. (6.7)

where

∆X i
t
△
= X i,1

t −Xi,2
t , ∆Y i

t
△
= Y i,2

t − Y i,1
t .

Proof. See Section 7.

We are now ready to prove Theorem 6.3.

[Proof of Theorem 6.3.]

In light of the previous argument and (6.1)-(6.4), we need only to obtain uniform esti-

mates for each term on the right hand side of (6.4) as n goes to ∞.

To this end we first note that, with a simple application of the Gronwall inequality and

the uniform Lipschitz conditions on the coefficients, it is readily seen that

|X0
t −X0,α

t |+ |X i
t −Xi,α

t |+ |Y i
t − Y i,α

t | ≤ C

∫ t

0
|L̄s − αs|ds. (6.8)

Now, for τn < ταn ≤ t, one has

Y n
τn = Ln = Y α,n

ταn
= Y α,n

τn +

∫ ταn

τn

λn(s,X
α,0
s , Xα,n

s , αs)ds ≥ Y α,n
τn + Λ1[τ

α
n − τn].

Thus

ταn − τn ≤ 1

Λ1
|Y n

τn − Y α,n
τn | ≤ C

∫ t

0
|L̄s − αs|ds.

With a similar argument for the case τn ≤ ταn we then obtain

|ταn − τn| ≤
1

Λ1
|Y n

τn − Y α,n
τn | ≤ C

∫ t

0
|L̄s − αs|ds. (6.9)

Next, recall (6.5). By Theorem 6.5 (i) one has

P{τn < t < ταn } = P{Y n
t > En > Y α,n

t } ≤ P{Y n,2
t > En > Y α,n

t }.

However, since En is now independent of Y n,2
t , Y α,n

t , we can use the fact that En ∼ exp(1)

to get

P{τn < t < ταn } ≤ E{|e−Y α,n
t − e−Y n,2

t |} ≤ E{|Y α,n
t − Y n,2

t |}

≤ E
{
|Y α,n

t − Y n
t |+ |Y n

t − Y n,2
t |

}
(6.10)

≤ CE
{∫ t

0
|L̄s − αs|ds+∆Y n

t

}
,
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thanks to (6.8). Similarly we can also derive that

P{ταn < t < τn} ≤ CE
{∫ t

0
|L̄s − αs|ds+∆Y n

t

}
. (6.11)

This, together with (6.8)-(6.10) and (6.4), as well as (6.8), leads to that

In ≤ C

∫ t

0
E{|L̄s − αs|}ds+ CE

{
|L̄α

t − αt|+∆Y n
t

}
.

Next, fix T > 0. For all 0 ≤ t ≤ T , by Theorem 6.5 we have

In ≤ C

∫ t

0
E{|L̄s − αs|}ds+ CE

{
|L̄α

t − αt|
}
+
CT

lnn
.

Similarly, for i = 1, · · · , n, we have

Ii ≤ C

∫ t

0
E{|L̄s − αs|}ds+ CE

{
|L̄α

t − αt|
}
+
CT

lnn
.

Then (6.2) and (6.3) lead to

E
{
|L̄n

t − αt|
}
≤ C

∫ t

0
E{|L̄n

s − αs|}ds+ CE
{
|L̄n,α

t − αt|
}
+
CT

lnn
.

Applying Gronwall’s inequality we obtain

E{|L̄n
t − αt|} ≤ CTE

{
|L̄n,α

t − αt|
}
+
CT

lnn
, 0 ≤ t ≤ T.

The theorem then follows immediately from (6.1).

7 Proof of Theorem 6.5

In this section we prove Theorem 6.5. We begin with two technical lemmas. Both of them

are fairly easy to prove.

Lemma 7.1 Let {ank}
n,∞
k,n be a two indices sequence of nonnegative numbers. Assume that

the following recursive relation holds for some constant C:

an0 = 0 and ank+1 = [1 +
ln k

n
+
C

n
]ank +

C

n(n− k)
, k = 0, 1, · · · , n− 1.

Then, ank is increasing in k and there exists C̃ ≥ C, such that for any ε > 0,

an[(1−ε)n] ≤
C̃

εnε lnn
→ 0, as n→ ∞,

where [x] ≤ x is the largest integer smaller than x.
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Proof. That ank is increasing in k is obvious. Now for any 0 < ε < 1, and k ≤ [(1− ε)n], we

have

ank+1 ≤ [1 +
lnn

n
+
C

n
]ank +

C

εn2
.

This implies that

ank+1

[1 + lnn
n + C

n ]
k+1

≤
ank

[1 + lnn
n + C

n ]
k
+

C

εn2[1 + lnn
n + C

n ]
k+1

.

Then, for k ≤ [(1− ε)n],

ank+1

[1 + lnn
n + C

n ]
k+1

≤
k∑

j=0

C

εn2[1 + lnn
n + C

n ]
j+1

,

and thus

ank+1 ≤
C

εn2

k∑
j=0

[1 +
lnn

n
+
C

n
]j ≤ C

εn2
[1 + lnn

n + C
n ]

k+1

lnn
n + C

n

.

Therefore, for n large enough and for some C̃ ≥ C which may vary from line to line,

an[(1−ε)n] ≤ C

εn2
[1 + lnn

n + C
n ]

(1−ε)n

lnn
n + C

n

=
C

εn(C + lnn)
e(1−ε)n ln(1+ lnn

n
+C

n
)

≤ C̃

εn lnn
e(1−ε)n( lnn

n
+ C̃

n
) =

C̃

εn lnn
e(1−ε)(lnn+C̃) ≤ C̃

εnε lnn
→ 0, as n→ ∞.

The proof is complete.

Lemma 7.2 Let ξ and η be two random variables and ψ an increasing (resp. decreasing)

function with E|ψ(ξ)| <∞ and E|ψ(η)| <∞. Assume P{ξ > x} ≤ P{η > x} for any x ∈ R.
Then E{ψ(ξ)} ≤ (resp. ≥) E{ψ(η)}.

Proof. We prove only the case in which ψ is increasing. Denote Gξ(x)
△
= P(ξ > x) and

Gη(x)
△
= P(η > x), x ∈ R. Since ψ is increasing, we have

ψ(x)Gξ(x) = E
{
ψ(x)1{ξ>x}

}
≤ E

{
ψ(ξ)1{ξ>x}

}
→ 0 as x→ ∞.

Similarly,

lim
x→∞

ψ(x)Gη(x) = 0, lim
x→−∞

ψ(x)[1−Gξ(x)] = 0, lim
x→−∞

ψ(x)[1−Gη(x)] = 0.

Then

lim
x→∞

ψ(x)[Gξ(x)−Gη(x)] = 0,

lim
x→−∞

ψ(x)[Gξ(x)−Gη(x)] = lim
x→−∞

ψ(x)
[
[1−Gη(x)]− [1−Gξ(x)]

]
= 0.
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Integrating by parts, we get

E{ψ(ξ)− ψ(η)} = −
∫ ∞

−∞
ψ(t)d[Gξ(t)−Gη(t)] =

∫ ∞

−∞
[Gξ(t)−Gη(t)]dψ(t).

The result follows immediately.

[Proof of Theorem 6.5.] (i) First, (6.6) follows immediately from the monotonicity

assumptions and the construction of the solutions.

(ii) In this step we establish some important estimates. Recall that {τ1,∗k }, {τ2,∗k } are

the order statistics of {τ1k}, {τ2k}, respectively; and denote

∆τ∗k
△
= τ1,∗k − τ2,∗k , τ1,∗0

△
= τ2,∗0

△
= 0.

Then clearly, ∆X0
0 = ∆Xi

0 = ∆Y i
0 = ∆τ0 = 0.

Fix k ≥ 0, and assume t ∈ [τ2,∗k , τ2,∗k+1]. Note that in this interval one has

X0,2
t = X0,2

τ2,∗k

+

∫ t

τ2,∗k

b0(s,X
0,2
s , L̂2

τ2,∗k

)ds+

∫ t

τ2,∗k

σ0(s)dB
0
s ,

X i,2
t = Xi,2

τ2,∗k

+

∫ t

τ2,∗k

bi(s,X
0,2
s , Xi,2

s , L̂2
τ2,∗k

)ds+

∫ t

τ2,∗k

σi(s)dB
i
s,

Y i,2
t = Y i,2

τ2,∗k

+

∫ t

τ2,∗k

λi(s,X
0,2
s , X i,2

s , L̂2
τ2,∗k

)ds.

Now, for l = 0, · · · , k + 1, we denote τ̃l
△
= (τ1,∗l ∨ τ2,∗k ) ∧ τ2,∗k+1. By (i) we deduce that

τ1,∗k ≥ τ2,∗k , for all k, thus we must have

τ2,∗k = τ̃0 ≤ τ̃1 ≤ · · · ≤ τ̃k+1 = τ2,∗k+1.

Let us now consider the sub-interval [τ̃l, τ̃l+1], on which

X0,1
t = X0,1

τ̃l
+

∫ t

τ̃l

b0(s,X
0,1
s , L̂1

τ̃l
)ds+

∫ t

τ̃l

σ0(s)dB
0
s ,

Xi,1
t = Xi,1

τ̃l
+

∫ t

τ̃i

bi(s,X
0,1
s , Xi,1

s , L̂1
τ̃l
)ds+

∫ t

τ̃l

σi(s)dB
i
s,

Y i,1
t = Y i,1

τ̃l
+

∫ t

τ̃l

λi(s,X
0,1
s , Xi,1

s , L̂1
τ̃l
)ds.

Note that on the set {τ̃l < τ̃l+1}, we must have τ1,∗l < τ2,∗k+1 and τ1,∗l+1 > τ2,∗k . Assume that

for each j = 1, · · · , l, the ordered statistics is attained at τ1,∗j = τ1ij . Then, in light of (i) we

have τ2ij ≤ τ1ij < τ2,∗k+1, and thus

τ2ij ≤ τ2,∗k . (7.1)
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Then, we have

0 ≤ L̂2
τ2,∗k

− L̂1
τ̃l

=
1

n

l∑
j=1

[L
ij
τ2ij

− L
ij
τ1ij

] +
1

n

∑
1≤i≤k,τ2,∗i ̸=τ2ij

Li
τ2,∗i

≤ K

n

l∑
j=1

∆τij +
k − l + 1

n
Λ3. (7.2)

By the Lipschitz continuity, we have

d∆X0
t ≤

[
K∆X0

t + Λ0(L̂
2
τ2,∗k

− L̂1
τ̃l
)
]
dt;

d∆Xi
t ≤

[
K∆X0

t +K∆Xi
t + Λ0(L̂

2
τ2,∗k

− L̂1
τ̃l
)
]
dt;

d∆Y i
t ≤

[
K∆X0

t +K∆Xi
t + Λ0(L̂

2
τ2,∗k

− L̂1
τ̃l
)
]
dt.

Then,

d(∆X0
t +∆Xi

t +∆Y i
t ) ≤ 3

[
K(∆X0

t +∆Xi
t +∆Y i

t ) + Λ0(L̂
2
τ2,∗k

− L̂1
τ̃l
)
]
dt,

and thus

e−3Kt[∆X0
t +∆X i

t +∆Y i
t ]

≤ e−3Kτ̃l [∆X0
τ̃l
+∆Xi

τ̃l
+∆Y i

τ̃l
] +

Λ0

K
[e−3Kτ̃l − e−3Kt][L̂2

τ2,∗k

− L̂1
τ̃l
].

Let us define

A0
△
= 0, At

△
= Aτ̃l +

Λ0

K
[e−3Kτ̃l − e−3Kt][L̂2

τ2,∗k

− L̂1
τ̃l
], t ∈ [τ̃l, τ̃l+1]. (7.3)

Then, A is increasing, and by induction one can easily see that

e−3Kt[∆X0
t +∆X i

t +∆Y i
t ] ≤ At, t ≥ 0. (7.4)

We now estimate A. First note that for any i,

Y i,2
τ2i

= Ei = Y i,1
τ1i

= Y i,1
τ2i

+

∫ τ1i

τ2i

λi(s,X
0,1
s , Xi,1

s , L̂1
s)ds ≥ Y i,1

τ2i
+ Λ1∆τi.

This, together with the monotonicity properties in (i) (for Y i), shows that

∆τi ≤
1

Λ1
∆Y i

τ2i
≤ 1

Λ1
e3Kτ2i Aτ2i

. (7.5)

Assume that the order statistics τ2,∗’s are attained at τ2,∗1 = τ2
ĩ1
, · · · , τ2,∗k = τ2

ĩk
. Then for

j = 1, · · · , k, one has

τ1
ĩj
= τ2

ĩj
+∆τĩj ≤ τ2

ĩj
+

1

Λ1
e
3Kτ2

ĩjAτ2
ĩj

≤ τ2,∗k +
1

Λ1
e3Kτ2,∗k A

τ2,∗k
.
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Since τ1,∗k ≤ max
1≤j≤k

τ1
ĩj
, we obtain

∆τ∗k ≤ 1

Λ1
e3Kτ2,∗k A

τ2,∗k
. (7.6)

Plugging (7.2) and (7.5) into (7.3) and recalling (7.1), we see that

Aτ̃l+1
≤ Aτ̃l +

Λ0

K
[e−3Kτ̃l − e−3Kτ̃l+1 ][

K

nΛ1

l∑
j=1

e3Kτ2i Aτ2ij
+
k − l + 1

n
Λ3]

≤ Aτ̃l + 3Λ0[τ̃l+1 − τ̃l]
[ Kl
nΛ1

A
τ2,∗k

+
k − l + 1

n
Λ3e

−3Kτ2,∗k

]
.

Summing over l = 0, · · · , k, we obtain

A
τ2,∗k+1

−A
τ2,∗k

≤ C

n
A

τ2,∗k

k∑
l=0

l[τ̃l+1 − τ̃l] +
3Λ0Λ3

n
e−3Kτ2,∗k

k∑
l=0

(k − l + 1)[τ̃l+1 − τ̃l]

=
C

n
A

τ2,∗k

k∑
l=1

[τ2,∗k+1 − τ̃l] +
3Λ0Λ3

n
e−3Kτ2,∗k

k∑
l=1

[τ̃l − τ2,∗k ]

≤ Ck

n
A

τ2,∗k
[τ2,∗k+1 − τ2,∗k ] +

3Λ0Λ3

n
e−3Kτ2,∗k

k∑
l=1

[(τ1,∗l − τ2,∗k )+ ∧ (τ2,∗k+1 − τ2,∗k )]

=
Ck

n
A

τ2,∗k
[τ2,∗k+1 − τ2,∗k ] +

3Λ0Λ3

n
e−3Kτ2,∗k

k+1∑
l=1

[(∆τ∗l + τ2,∗l − τ2,∗k )+ ∧ (τ2,∗k+1 − τ2,∗k )].

Note that, for any x, α, β > 0, (x − α)+ ∧ β ≤ β
α+βx. Then, by (7.6), we deduce from the

above

A
τ2,∗k+1

−A
τ2,∗k

[
1 +

Ck

n
[τ2,∗k+1 − τ2,∗k ]

]
≤ 3Λ0Λ3

n
e−3Kτ2,∗k

[ k∑
l=1

∆τ∗l
τ2,∗k+1 − τ2,∗k

τ2,∗k+1 − τ2,∗k + τ2,∗k − τ2,∗l

+ τ2,∗k+1 − τ2,∗k

]
≤ 3Λ0Λ3

nΛ1

k∑
l=1

A
τ2,∗l

τ2,∗k+1 − τ2,∗k

τ2,∗k+1 − τ2,∗k + τ2,∗k − τ2,∗l

+
C

n
[τ2,∗k+1 − τ2,∗k ]. (7.7)

For any t1 < · · · < tk and i1, · · · , ik, recall (3.5) and (3.8). By Assumption 6.1 (iv) we

derive from (3.7) that

e−(n−k)Λ2t ≤ P
{
τ2,∗k+1 > tk + t

∣∣∣Gk
t , τ

2,∗
l = τ2il = tl, l = 1, · · · , k

}
≤ e−(n−k)Λ1t. (7.8)

By (7.3), one can easily check that

A
τ2,∗j

1{τ2,∗l =τ2il
=tl,l=1,··· ,k} is Gk

t

∨( k∨
l=1

σ(τ2,∗l = τ2il = tl)
)
-measurable, j = 1, · · · , k.
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Then (7.8) implies that

e−(n−k)Λ2t ≤ P
{
τ2,∗k+1 − τ2,∗k > t

∣∣∣σ(τ2,∗l , A
τ2,∗l

, l = 1, · · · , k
)}

≤ e−(n−k)Λ1t. (7.9)

Next, using the second inequality in (7.9) and applying Lemma 7.2 (by setting ξ = τ2,∗k+1 −
τ2,∗k , η ∼ exp{(n− k)Λ1}, and ψ(x) = x) we obtain

E
{
τ2,∗k+1 − τ2,∗k

∣∣∣σ(τ2,∗l , A
τ2,∗l

, l = 1, · · · , k
)}

≤ 1

(n− k)Λ1
.

Since x
a+x is concave in x, applying Jensen’s inequality we get

E
{ τ2,∗k+1 − τ2,∗k

τ2,∗k+1 − τ2,∗k + τ2,∗k − τ2,∗l

∣∣∣σ(τ2,∗l , A
τ2,∗l

, l = 1, · · · , k
)}

≤
1

(n−k)Λ1

1
(n−k)Λ1

+ τ2,∗k − τ2,∗l

=
1

1 + (n− k)Λ1(τ
2,∗
k − τ2,∗l )

Let Ẽ1, · · · , Ẽk be i.i.d. exponential random variables with rate 1 and independent of F.
Since 1

1+ax is decreasing in x for a > 0,we can apply Lemma 7.2 repeatedly by using the

first inequality in (7.9) and setting ξ ∼ exp{(n− k)Λ2}, η = τ2,∗k+1 − τ2,∗k , and ψ(x) = 1
1+ax

to get

E
{ 1

1 + (n− k)Λ1(τ
2,∗
k − τ2,∗l )

∣∣∣σ(τ2,∗j , A
τ2,∗j

, j = 1, · · · , l
)}

≤ E
{ 1

1 + (n− k)Λ1
∑k−1

j=l
Ẽj

(n−j)Λ2

}
≤ E

{ 1

1 + (n−k)Λ1

(n−l)Λ2

∑k−1
j=l Ẽj

}
.

For k − l ≥ 1, noticing that
∑k−1

j=l Ẽj has exponential distribution with rate k − l, we have

E
{ 1

1 + (n−k)Λ1

(n−l)Λ2

∑k−1
j=l Ẽj

}
≤ (n− l)Λ2

(n− k)Λ1
E
{ 1∑k−1

j=l Ẽj

}
=

(n− l)Λ2

(n− k)Λ1

1

k − l
.

Plug all these into (7.7) and denote

ak
△
= E{A

τ2,∗k
}, a∗k

△
= max

0≤i≤k
ai.

Then, we get

ak+1 ≤
[
1 +

Ck

n(n− k)

]
ak +

3Λ0Λ3

nΛ1

[ k−1∑
l=1

al
(n− l)Λ2

(n− k)Λ1

1

k − l
+ ak

]
+

C

n(n− k)

≤ a∗k

[
1 +

Ck

n(n− k)
+
C

n
+

3Λ0Λ2Λ3

nΛ2
1

k−1∑
l=1

[
1

k − l
+

1

n− k
]
]
+

Ck

n(n− k)

≤ a∗k

[
1 +

Ck

n(n− k)
+
C

n
+

3Λ0Λ2Λ3

Λ2
1

ln k

n

]
+

Ck

n(n− k)
.
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For k ≤ (1− ε)n, thanks to Assumption 6.1 (v), we have

ak+1 ≤
[
1 +

ln k

n
+
Cε

n

]
a∗k +

Cε

n2
.

This implies that

a∗k+1 ≤
[
1 +

ln k

n
+
Cε

n

]
a∗k +

Cε

n2
, k ≤ (1− ε)n.

Since a0 = 0, applying Lemma 7.1 we obtain

a∗(1−ε)n ≤ Cε

nε lnn
→ 0, as n→ ∞,

for any ε > 0, proving (ii).

(iii) We now prove (6.7). Recall that A is increasing. For any ε > 0, by (7.4) we have

E{∆Xt} = E
{
∆Xt[1{τ2,∗

(1−ε)n
≥t} + 1{τ2,∗

(1−ε)n
<t}]

}
≤ e3KtE

{
At1{τ2,∗

(1−ε)n
≥t}

}
+ E

{
∆Xt1{τ2,∗

(1−ε)n
<t}

}
≤ CTE{Aτ2,∗

(1−ε)n
}+ E{∆Xt1{τ2,∗

(1−ε)n
<t}}

≤
Cε,T

nε lnn
+ E

1
2 {|∆Xt|2}P

1
2 {τ2,∗(1−ε)n < t}

≤
Cε,T

nε lnn
+ CTP

1
2 {τ2,∗(1−ε)n < t}.

However, from (7.9) and applying Lemma 7.2 we see that

P{τ2,∗(1−ε)n < t} ≤ P
{
τ̂2,∗(1−ε)n < t

}
, where τ̂2,∗(1−ε)n

△
=

(1−ε)n∑
i=1

Ẽi

(n− i)Λ2
.

Observe that

E
{
τ̂2,∗(1−ε)n

}
=

(1−ε)n∑
i=1

1

(n− i)Λ2
≥ 1

2Λ2
ln

1

ε
;

V ar
{
τ̂2,∗(1−ε)n

}
=

(1−ε)n∑
i=1

1

(n− i)2Λ2
2

≤ 2(1− ε)

εΛ2
2n

.

Choosing ε
△
= εT > 0 so that ln 1

ε = 2Λ2(T + 1), we then have

P{τ2,∗(1−ε)n < t} ≤ P
{
τ̂2,∗(1−ε)n < t

}
≤ P

{
τ̂2,∗(1−ε)n − E{τ̂2,∗(1−ε)n} < t− 1

2Λ2
ln

1

ε

}
≤ P

{
τ̂2,∗(1−ε)n − E{τ̂2,∗(1−ε)n} < −1

}
≤ V ar(τ̂2,∗(1−ε)n) ≤

2(1− εT )

εTΛ2
2n

=
CT

n
.

Thus,

E{∆Xt} ≤
Cε,T

nε lnn
+
CT√
n
.

This proves (6.7) immediately, hence the theorem.
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