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Abstract

We consider a Black-Scholes type model, but with volatility being a Markov Chain
process. Assuming that the stock price is observed at discrete, possibly random times,
the goal is to estimate the current volatility value. The model parameters, that is,
the possible volatility values and transition probabilities, are estimated using the Mul-
tiscale Trend Analysis method of Zaliapin, Gabrielov and Keilis-Borok [17], adapted
to our framework. Once these are given, the volatility is estimated using the filtering
formula of Cvitanić, Liptser and Rozovskii [3]. Our numerical implementation shows
that the estimation is of very high quality under a range of conditions.

Key Words and Phrases: Volatility, estimation, filtering, high-frequency data.

MSC2000 classification: 91B28, 91B40, 93E20
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1 Introduction

The goal of this paper is to develop a framework for estimating the current value of volatility

from stock prices which are observed discretely, possibly at random times. In particular, we

have in mind high-frequency, “tick-by-tick” stock data.

Our model is a Black-Scholes type dynamics for the stock price, but with volatility

that follows an independent Markov Chain process. The stock price observation times are

modeled as a Cox process — a doubly stochastic Poisson process with intensity that can

depend on the current volatility value. Thus, higher volatility may go together with more

frequent observations. Given the volatility model, we can estimate its current value using the

filtering formula developed in Cvitanić et al. [3]. (In fact, that paper develops the formula

for the case of the volatility being a general jump-diffusion process and the observation times

having a general structure) Before we can do the filtering, we have to decide what possible

values the volatility chain can attain, and what the transition probabilities are. This we do

by adapting the so-called Multiscale Trend Analysis of Zaliapin et al. [17].

The bulk of the paper consists of an analysis of the performance of the estimation pro-

cedure on simulated and real data. We show that the procedure performs very well in a

variety of circumstances. It quickly recognizes when there is a jump in volatility value. It is

also robust with respect to the given drift value, which is important, as the drift is hard to

estimate in practice.

There have been different approaches to estimating stochastic volatility from financial

data. Maybe the most famous approach is ARCH-GARCH type modeling, where the price

and the volatility are modeled as discrete time-series processes; see Gourieroux [8] for a sur-

vey. Since volatility is not an observed process, it is natural to try using filtering methods to

estimate it from observed stock prices. In discrete-time framework, with fixed observation

intervals, this was done in Elliott et al. [4]. In continuous-time models with possibly random

observation times, the filtering approach is used in Frey and Runggaldier [6]. (See Rung-

galdier [16] for an up-to-date survey.). They obtain numerical approximation to the optimal

filter. In Cvitanić et al. [3], the continuous-time optimal filter is obtained explicitly, and it

is their formula that we use in this paper. See also Gallant and Tauchen [7], who develop an

approximating algorithm in continuous time when the volatility is also a diffusion process,

Malliavin and Mancino [12] for a nonparametric approach, as well as Fouque et al. [5],

Rogers and Zane [15], and Kallianpur and Xiang [11] for still other approaches. For a recent

general approach to statistical estimation of diffusion processes with discrete observations,

see Ait Sahalia and Mykland [2]. The model we use, with Markov Chain process for volatil-

ity, is usually called ”a regime switching model” and has been used increasingly often in the

option pricing literature. See, for example, Guo and Zhang [9]. Platania and Rogers (2004)

calibrate a Markov Chain model for observation intervals between data points. Johannes
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and Polson (2003) provide a nice survey of Markov Chain Monte Carlo methods for financial

data.

In addition to filtering the volatility values, as mentioned above, we also present a sys-

tematic way of deciding which possible values the volatility process can attain, and what

the corresponding probabilities are, using the ideas of the Multiscale Trend Analysis (MTA)

of Zaliapin et al. [17]. This is in contrast to the majority of existing filtering or Hidden

Markov Chain literature, where this decision is often somewhat arbitrary and ad hoc. This

preliminary stage is related to the power variation estimates of volatility, as surveyed in

Barndorff-Neielsen, Graversen and Shephard (2003), for example. As in the literature on

power variation approach, we use a variation process to estimate possible volatility values.

However, while in that literature such an estimate is the final estimate of volatility, in our

case it serves only as an estimate of a priori values, from which we then get a posteriori

values using filtering. Also, let us emphasize again that, unlike most of the existing work,

the time intervals between observations may be random in our framework.

While our numerical implementation shows that the framework we use is practical and

efficient, there are potential drawbacks, such as the fact that we assume that the volatility

process is independent of the Brownian Motion driving the stock process. Also, we consider

only the estimation of the current volatility, and not the prediction of future volatility. We

leave these issues for future research.

We describe the model and the filtering formula in section 2, present a method for the

numerical implementation in section 3, and we analyze the filter performance in section 4.

Section 5 provides the description of the MTA method for estimating a priori parameters

of the model, section 6 describes the whole algorithm, section 7 provides examples with

simulated and real data, and section 8 compares the filter to a simple estimation based on

returns of the risky asset. In Appendix we provide proofs and a brief description of the

MTA method.

2 Filtering Approach to the Estimation Problem

We consider the problem of estimating the current value vt of the volatility (vs)s≥0 of the

log-price process

logSt =: Xt = X0 +

∫ t

0

(
µ− v2

s

2

)
ds+

∫ t

0

vs dBs, (2.1)

where Bt is a Brownian motion, volatility vt is positive, and drift µ is assumed constant

(for simplicity). We also assume that the process St is observed at discrete random times

0 < T1 < T2 < . . . < TN < T. In Cvitanić et al. [3], general filtering formulas are given
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for the conditional expectation Et[f(vt)] given the sigma-algebra {Gt} generated by the

observations Xk := XTk and Tk up to time t.

In this paper we focus on the special case when vt is a homogeneous Markov jump

process taking values in the finite alphabet A = {a1, . . . , aM} with the intensity matrix

Λ = (λij)i,j=1...,M and the initial distribution pi = P (v0 = ai), i = 1, . . . ,M . We assume

that the counting process

Nt =
∑

k≥1

I(Tk ≤ t)

is a doubly stochastic Poisson (Cox) process, with intensity n(vt), for some bounded function

n. In this case the results of Cvitanić et al. [3] provide the formula for the conditional

probabilities of the volatility state at the observation times

pi(Tk) := P (vTk = ai|GTk), i = 1, . . . ,M

in the recursive form

pi(Tk) =
n(ai)

∑
j rji(Tk − Tk−1, Xk −Xk−1)pji(Tk − Tk−1)pj(Tk−1)∑

i,j n(ai)rji(Tk − Tk−1, Xk −Xk−1)pji(Tk − Tk−1)pj(Tk−1)
. (2.2)

Here we denoted

pji(t) = P (vt = ai | v0 = aj);

and

rji(t, z) = E
(
e−

R t
0 n(vu)du ρj0,t(z)|vjt = ai

)
, (2.3)

where ρs,t(y) is the density function of the normal distribution with mean

m(s, t) =

∫ t

s

(
µ− v2

u

2

)
du

and variance

σ2(s, t) =

∫ t

s

v2
udu.

The process vt starting from aj is denoted by vjt , and ρj0,t(z) is obtained by substituting vjs
for vs in ρ0,t(z).

Implementation of the recursive filter (2.2) requires some a priori information about

the volatility process vt and observational grid Tk. Specifically, one has to know volatility

alphabet A, transitional intensities Λ, initial probabilities pi, and observation intensities

N = n(ai), i = 1, . . . ,M . In practice, the a priori values of these parameters are either

provided by market experts or estimated from the asset price dynamics over the past. In

this paper we explore the second approach developing and testing a statistical technique for

estimating a priori values of the filter input parameters in (2.2). Before proceeding with this

goal, we describe a numerical implementation of the filter (2.2) and explore its performance

in case of known values of input parameters.
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3 Numerical implementation of the filter

This section describes numerical implementation of the filter (2.2) with known a priori

values of input parameters. In this case, at each step of the recursive filtering one needs to

know the conditional probabilities pji(t) and to compute the conditional expectations rji,

which depend on the volatility. Below we introduce a discrete-time approximation dn to the

continuous-time volatility process vt; this will provide an analytical approximation to pji(t),

and facilitate the Monte Carlo estimation of rji.

3.1 Discrete approximation of vt

We now construct a natural discrete-time Markov process approximation dn of the volatility

process vt, with values from the alphabet {ai}i=1,...,M . We fix a small discrete step ∆ and

define the transition probability matrix Q = (Qij)i,j=1,...,M for the process dn as

Qij =

{
λij ∆, i 6= j

1−∑i6=k λik ∆, i = j.
(3.1)

Here the step ∆ is chosen such that ∆
∑

ij λij < 1. The finite-dimensional distributions of

the process dn converge to that of vt as ∆→ 0.

The probabilities pji(t) = P (vjt = ai) are estimated using the corresponding probabilities

for the discrete process dn:

p̂ji(t) = P (dmt = ai | d0 = aj) = [ej ×Qmt ](i), (3.2)

where mt =
⌊
t
∆

⌋
, ej denotes a row-vector of length M with all zeros except for the value

one at the j-th position, [v](i) is the i-th element of vector v, and bxc is an integer closest

to x from below.

The process
(
vjs | vjt = ai

)
on [0, t) is approximated by its discrete counterpart

(dn | d0 = aj, dmt = ai) on [0, mt). The one-step conditional transitional probabilities for the

latter process are given by

P (dn = ak | dn−1 = ak′ , dmt = ai) =

=
P (dn = ak | dn−1 = ak′)P (dmt = ai | dn = ak)∑M

m=1 P (dn = am | dn−1 = ak′)P (dmt = ai | dn = am)
. (3.3)

Here

P (dn = ak | dn−1 = ak′) = [ek′ ×Q](k); (3.4)

P (dmt = ai | dn = ak) = [ek ×QN−n](i). (3.5)
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The only arbitrary choice in our construction is the discrete time step ∆. To approximate

vt on [0, t) we set

∆ = min

{
1

100 max(λij)
,
t

100

}

which ensures that we have on average no less than 100 steps of dn within each interval of

constant volatility vt, yet no less than 100 steps within [0, t).

3.2 Monte Carlo estimation of rji

A Monte Carlo procedure used to estimate the conditional expectation rji is based on the

simulations of the discrete-time process dn defined in the previous section. Introducing the

notation

δk := (Tk − Tk−1) , ∆k := (XTk −XTk−1
), (3.6)

and

Ajk :=

∫ δk

0

(
vju
)2
du

we see that in estimating rij of (2.3), we can use

ρj0,δk(∆k) =
1√

2πAjk

exp

{
−
(
∆k − µδk + 1

2
Ajk
)2

2Ajk

}
. (3.7)

The only random element here is Ajk, which can be found given a realization of vt on [0, δk):

Ajk :=

Nk∑
i=1

a2
(i)(ui − ui−1), (3.8)

where ui are the times of the volatility jumps, Nk is the number of volatility jumps in

the interval [0, δk), v
j
t = a(i) are the volatility values for t ∈ [ui−1, ui) (from the alphabet

{a1, . . . , aM}), u0 = 0, uNk = δk, a(1) = aj. The condition vjδk = ai of (2.3) implies that

a(Nk) = ai.

Similarly,

∫ δk

0

n(vju)du =

Nk∑
i=1

n(a(i))(ui − ui−1). (3.9)

We estimate rij by simulating independent realizations of dn on [0, δk) and using equations

(3.8) and (3.9) with {vjt} replaced by {dn | d0 = aj}.
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4 Filter performance

Here we illustrate the performance of the filter (2.2) implemented as described in Sect. 3.

4.1 Measures of estimation quality

We use three alternative “score functions” for a formal assessment of the filter estimation

quality. One of them compares the posterior distribution of volatility values with a reference

one; the other two evaluate the distance between the estimated and true volatility.

The first score is based on the likelihood-ratio:

SLR =
1

N

N∑

k=1

log
pa(k)

πa(k)

, (4.1)

where N is the number of observations, pa(k)
denotes the a posteriori probability that the

volatility is a(k) at k-th step, and πa(k)
is the corresponding reference (a priori) probability

for this value. In our case, it is natural to set πi = pi, so that SLR compares our performance

with the random guessing based on the a priori distribution of volatility values. A random

guessing according to initial probabilities pi corresponds to SLR = 0; positive score values

indicate that our performance is better than random; negative that it is worse than random

(it is better to guess than to apply our estimation). The value of this score for the ideal

prediction (probability of the true value is 1 at every step) is − 1
N

∑
k log πk; in the case

πk = 1/M this gives logM . Below we use the base-M logarithm in the definition (4.1) which

makes the best possible score SLR = 1.

An alternative score function is based on the empirical frequencies

qij :=

∑
k δ(v̂Tk − aj, vTk − ai)∑

k δ(vTk − ai)
, i, j = 1, . . . ,M. (4.2)

Here δ(·, ·) is a discrete delta function, v̂Tk is an estimation of volatility based on posterior

probabilities pi(Tk) (see for instance (7.1)). The diagonal elements of qij correspond to the

instants with correct volatility estimates, while the off-diagonal elements to the instants with

wrong estimates. Clearly, an ideal volatility estimation (correct volatility estimate at every

step) corresponds to the diagonal form of qij. The score function is defined as

Str =
Trace(qij)

M
=

∑M
i=1 qii
M

. (4.3)

An ideal estimation corresponds to qij = δ(i− j) and would give the maximum score Str =

1. For a “random” estimation based on any time-independent posterior distribution (say,

pi(Tk) = pi using the initial distribution) the summands that correspond to vTk = ai in

the numerator of (4.2) become independent binomial random variables with probability
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of success being a function of pj(T1) (in case of using (7.1) it is just pj(T1)). Hence qij

converges a.s. to pj(T1) as #{k : vTk = ai} → ∞; and the corresponding score Str converges

to
∑

pj(T1)/M = 1/M .

The last score is defined as the L2 distance between the true volatility and its estimate:

SL2 =

∑
k (vTk − v̂Tk)2

∑
k (vTk)

2 . (4.4)

We used all the above scores in our experiments and found that they give similar assess-

ment of the filtering quality.

Remark 4.1 Strictly speaking, the above scores SLR and Str are defined under the assump-

tion that the posterior volatility takes values in the true alphabet A. In practice, they can

be still applied if the estimated alphabet Â is close in some sense to the true one. Say, if

the posterior volatility alphabet has the same number of elements as the true one and their

numerical values are close. We will see that this condition is satisfied in our examples below.

4.2 Performance with known a priori parameters

4.2.1 Introductory examples

This section illustrates the performance of the estimates (2.2) with known values of input

parameters. Here we restrict the analysis to a two-valued volatility process, which simplifies

parametrization and makes our examples more intuitive.

First, we put a1 = 0.1, a2 = 1, n1 := n(a1) = 50, n2 := n(a2) = 100, λ12 = λ21 = 1;

the results of the filtering estimation are illustrated in Fig. 1. The estimate performance is

almost perfect: it takes a small fraction of a time unit to reset the a posteriori probability

in response to the volatility change; otherwise the value of p1(t) is either close to 1 (showing

that the current volatility value is a1) or to 0 (in case of a2).

The power of the filter (2.2) is better demonstrated when we consider the close volatility

values a1 = 0.3, a2 = 0.4, leaving the observational intensities n1 = 50, n2 = 100 (Fig. 2).

In this case, the asset price trajectories that correspond to alternative volatility values are

visually indistinguishable (bottom panel); still, the a posteriori probabilities depict nicely

the unobserved volatility changes (top panel). One notices though that now it takes longer

to recognize the volatility change.

Remark 4.2 We assume that µ, vt, ni, and λij have units 1/year. It is useful to notice that

daily observations correspond to about ni = 3× 102 while hourly to about 8× 103.
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4.2.2 Analysis of the two-valued volatility model

Here we test systematically the filtering of the two-valued volatility process. Our simulations

suggest that the filtering quality is primarily affected by the magnitude of the volatility

change, that is the ratio a1/a2, rather than specific values of a1 and a2; and a similar

conclusion is made for the observational intensities. This allows us to consider the alphabet

{a1 = 0.3, a2}, observational intensities {n1 = 50, n2}, drift µ = 0.05, and jump intensities

λ =

(
−1/2 1/2

1/2 −1/2

)

and vary only two parameters — a2 and n2 — within several orders of magnitude. All

estimations have been done with true a priori values of filter input parameters.

The quality score SLR is shown as a function of a2, n2 in Fig. 3. The quality of the filter

is generally very good (Str > 0.9, SLR > 0.85). The filter quality significantly deteriorates

only when a2 → a1 and n2 → n1 simultaneously, that is, when the two regimes become truly

undistinguishable. Notice that the filter can separate two regimes either by intensity (even

when a1 → a2), or by volatility (even when n1 → n2), or using both of them. Our simulations

also show that the filter quality improves as the observational intensities ni increase.

Remark 4.3 Our numerical analysis using the three alternative score functions suggests

that the filtering quality is robust with respect to the values of the drift µ and the jump

intensities Λ, when the observation intensities ni grow larger. In particular, it seems enough

to have a several dozen of observations between consecutive volatility jumps in order to

make the filter estimates almost independent of µ, Λ. We plan to explore this issue in more

detail in future work.

5 Estimating a priori values of the filter parameters

In this section we consider the problem of estimating a priori values of the filter parameters

— volatility alphabet A, jump intensities Λ, initial probabilities pi (i, j = 1, . . . ,M), and

observation intensities N = n(ai) — using the observations of X(t) on the random grid Tk.

The idea of the proposed estimation procedure is to construct the process Pt such that

∆Pt ≈ a vt ∆t, (5.1)

for small ∆t. The estimation of piece-wise constant volatility vt is then equivalent to finding

the optimal piece-wise linear approximation L(t) to the process Pt. Distinct slopes of L(t)

will correspond to distinct volatility values; and the rest of the parameters can also be

estimated using L(t). The practical applicability of this approach depends crucially on the
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properties of the process Pt as well as on our ability to construct good piece-wise linear

approximations. Below we construct process Pt such that it conforms to (5.1) and allows

estimation of the volatility using a single realization. The problem of piece-wise linear

approximation will be effectively solved by the Multiscale Trend Analysis (MTA) [17] which

we briefly describe in Sect. 9.2.

5.1 Volatility alphabet

Consider the process Pt defined as the sum of the absolute returns between the instants Tk:

Pt :=
∑

k:Tk<t

|∆k|, (5.2)

where ∆k := XTk − XTk−1
. The alphabet estimation procedure is based on the following

result:

Proposition 5.1 Suppose that the volatility v and the intensity n of observations are con-

stant within the interval [0, t]. Then

Pt
t
√
n
− v√

2

a.s.−→ 0, as n→∞. (5.3)

In other words, for large intensity n,

Pt ∼ tv

√
n

2
. (5.4)

Proof: See Appendix 9.1.

Remark 5.1 The proposition is also true for intervals of the form [t1, t2]. Thus, as n →
∞ and the intervals between observations become smaller, we have for the local value of

volatility v and intensity n,

Pt2 − Pt1 =
∑

k:t1≤Tk≤t2
|∆k| ≈ (t2 − t1)v

√
n

2
.

Thus, if volatility vt is piece-wise constant with values from the alphabet A, and the obser-

vational intensity N is a function of volatility, then Pt is asymptotically a piece-wise linear

function with slopes

si = si(ai) = ai

√
ni
2

(5.5)

within the respective intervals.
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Remark 5.2 A similar proof shows that in the case of fixed intervals of length δ between

observations
√
δ Pt
t
− v
√

2

π

a.s.−→ 0, as δ → 0. (5.6)

Thus, the distinct slopes of a piece-wise linear Pt are (asymptotically) given by

si = si(ai) = ai

√
2

π δ
. (5.7)

Remark 5.3 Barndorff-Neielsen, Graversen and Shephard [1] showed that if Xt is a Brow-

nian seminartingale with vt being a càdlàg process, and observations are made on a regular

grid with a fixed step δ, then under some mild conditions on vt

√
δPt

P−→
√

2

π

∫ t

0

vsds , as δ → 0. (5.8)

Remark 5.4 In applications it is important to know the rapidity of convergence in (5.3).

Roughly speaking, it is controlled by the parameter κ := b/
√
n with b = r/v−v/2. Figure 4

shows the relative error of the estimation (5.4) as a function of κ. This plot was obtained

using numerical simulations within a broad range of model parameters:

10−2 ≤ r ≤ 102; 10−2 ≤ v ≤ 102; 10−3 ≤ n ≤ 104.

The figure shows that κ cearly controls the quality of estimation; and that the quality is

very good (relative error < 3%) as soon as κ < 0.1.

If we consider a piece-wise linear process L(t) with slopes defined as in (5.5), (5.7), then

the distinct volatility values ai are uniquely determined by M distinct slopes of L(t). Below

we will use observations to approximate the asymptotic piece-wise linear structure of Pt.

If this approximation has NL distinct linear segments and the observations form a Poisson

process, then according to (5.5) the distinct volatility values can be estimated as

ãi
Poisson = si

√
2

ni
, i = 1, . . . , NL. (5.9)

In case of regular observational grid with step δ we similarly obtain using (5.7)

ãi
Regular = si

√
π δ

2
, i = 1, . . . , NL. (5.10)

From (5.9),(5.10) one obtains a piece-wise constant volatility estimate ṽt with NL distinct

values ãi. If the piece-wise linear approximation L(t) is close to the piece-wise linear limit of

Pt, the estimators ãi should have a multi-modal distribution with each mode corresponding
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to a single value of the true alphabet A. To estimate the size M of the alphabet as well

as its elements, the estimated volatility values ãi, i = 1, . . . , NL, should be appropriately

binned into M̂ ≤ NL groups {âi}i=1,...,cM . We denote this grouped volatility estimate by v̂t.

The problem of automated binning (which reduces to estimating the number of modes in

an empirical distribution) is not a trivial one, especially when NL is small; this problem is

beyond the scope of the present paper.

Note that parameters ni, i = 1, . . . , NL, in (5.9), should also be estimated from the data.

Suppose that i-th segment of L(t) has duration τi and includes mi observations. A natural

estimate of n(i), i = 1, . . . , NL, within the i-th segment of L(t) is

n̂(i) =
mi

τi
. (5.11)

Below we use this expression to obtain initial estimates ãi, i = 1, . . . , NL, of the alphabet

values.

The main problem in constructing L(t) is that we do not know a priori the intensity of

volatility jumps, which would give an estimate of the number of linear segments within L(t)

(while the problem of constructing an optimal piece-wise linear approximation with given

number of segments is well-studied). Thus, we have to resolve the tradeoff between the detail

and the quality of the piece-wise linear approximation L(t). In general, we want the alphabet

{ai} (the number of distinct slopes) to be as small as possible while the approximation L(t)

be as close to Pt as possible; and these two goals contradict each other. This tradeoff can

be effectively resolved and the approximation L(t) constructed by the Multiscale Trend

Analysis of [17] (see Appendix 9.2). We demonstrate below that the MTA estimation based

on Proposition 5.1 is very efficient within a broad range of model parameters.

5.2 Initial probabilities, observation intensities, and jump inten-

sities

Let mij (i, j = 1, . . . , M̂) denote the number of observation epochs Tk such that v̂Tk = aj

and v̂Tk−1
= ai:

mij =
N∑

k=2

δ(v̂Tk − aj, v̂Tk−1
− ai),

where δ(·, ·) is a discrete delta-function. Similarly we define

τij =
N∑

k=2

(Tk − Tk−1) δ(v̂Tk − aj, v̂Tk−1
− ai).
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The initial probabilities pi = P (v0 = âi), off-diagonal jump intensities {λij}, i 6= j, and

observation intensities ni = n(ai) are estimated as

p̂i =

∑
k τik∑

j

∑
k τjk

, i = 1, . . . , M̂ . (5.12)

λ̂ij =
τii + τij
mij

, i, j = 1, . . . , M̂ , i 6= j. (5.13)

n̂i =

∑
kmik∑
k τik

, i = 1, . . . , M̂ . (5.14)

After that, the diagonal jump intensities are estimated as

λ̂ii = −
∑

k 6=i
λ̂ik, i = 1, . . . , M̂ .

Remark 5.5 We introduced two different estimators for observation intensity ni given by

Eqs. (5.11) and (5.14). The estimate (5.11) is preliminary, it gives NL estimated values of

intensity, each corresponding to one segment of the piece-wise linear approximation L(t).

This is necessary to obtain a preliminary alphabet estimate {ãi}, i = 1, . . . , NL. On the

other hand, the final expression (5.14) produces M̂ estimated values using the posterior

coarse alphabet {âi}.

5.3 Example

Here we illustrate the alphabet estimation procedure introduced above using the process Xt

defined by equation (2.1) with µ = 0.05, two-valued volatility alphabet {√2µ, 2
√

2µ} ≈
{0.316, 0.632}, transition intensities λ12 = λ21 = 1, observational intensities ni = 103, and

initial probabilities pi = 1/2. A realization of the process Xt is shown in Fig. 5a; the shaded

areas depict intervals with vt = a1. Figure 5b shows the process Pt, which indeed captures

the time-dependent volatility structure. For visual convenience, we show here the detrended

process P̂t, since the monotonicity of Pt makes it difficult to distinguish between its global

upward trend and piece-wise linear segments we are interested in. The piece-wise linear

structure of Pt prominently overcomes the stochastic noise unavoidably present in Pt.

Next we apply the MTA constructing the hierarchy of piece-wise linear decompositions

Lk(t) for Pt. The MTA spectrum—the fitting error Ek (in L2) as a function of the number

Nk of linear segments within Lk—is shown in Fig. 6. Recall from [17] that for a pure random

walk

Ek =
E0

Nk

, (5.15)
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which is clearly observed for Nk > 40. For Nk ≤ 20 the spectrum deviates from this line

depicting presence of a non-random structure within Pt. The transition between the two

scaling regimes occurs within the interval between Nk = 22 and Nk = 42, which we denote

in the figure as the corner point 1 and 2 respectively. The first corner point corresponds

to the MTA level k = 13, the second to k = 25. To depict the piece-wise linear structure

of Pt we first consider its piece-wise linear approximation L13(t) at the level k = 13 of the

MTA decomposition; that is at the corner point 1 of the MTA spectrum (see Fig. 6). The

approximation L13(t) is shown in Fig. 5b together with the original process Pt; recall that we

extracted the global trend of Pt from both the functions. One can see that MTA correctly

depicted all the major linear segments that correspond to the intervals of constant volatility.

Next we estimate the volatility alphabet using the formula (5.9); the raw estimate ṽt

is shown in Fig. 5c; the true volatility values are depicted by dashed horizontal lines. The

distribution of distinct values of ṽt is shown on the right in Fig. 5c: the bimodal structure

of the distribution is obvious. The estimates âi of the alphabet values are obtained as the

averages of ãi within the distinct modes. The resulting alphabet is {0.323, 0.647}, which is

within 3% relative error of the true values. Next, we distribute the raw estimates ãi into the

two bins to obtain the resulting estimate v̂t shown in panel d; indeed it is almost perfect,

missing only one very short volatility interval at t ≈ 15.

The initial probabilities are estimated as p̂1 = 0.56 and p̂2 = 0.44. The jump intensities

as λ̂12 = 0.97 (2% relative error), λ̂21 = 1.03 (3%). The observation intensities as n̂1 = 985.2

(1%), n̂2 = 1012.1 (1%).

We emphasize that the most delicate part of the above scheme is detecting jumps of vt,

while estimating the volatility within fixed intervals is a much simpler problem. Thus, the

better the piece-wise linear approximation Lk(t), the better the final estimation. A natural

question is how sensitive is the described algorithm to the choice of the MTA level k. To

answer this question we repeat the estimation procedure at the second corner point, k = 25

(see Fig. 6). The results are shown in Fig. 7; the estimation now depicts correctly even the

tiny volatility interval at t ≈ 15 while the alphabet values are estimated with the error less

than 2%.

Clearly, any decomposition level between k = 13 and k = 25 will result in a good estimate

of the volatility alphabet, with relative error less that 3%. We emphasize that the number

Nk of segments within the piece-wise linear approximation varies here almost twice: from

N13 = 22 to for N25 = 42; thus the algorithm is very stable to the particular choice of the

piece-wise linear approximation.
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6 The combined algorithm

In this section we merge the results of the above Sects. 2, 3, and 5 to construct the combined

volatility estimation procedure; it is described by the following sequence of steps:

Input: Asset’s log-prices X(Tk), Tk ≤ T .

Step 1. Estimate volatility alphabet.

1.1 Construct the process Pt of Eq. (5.2).

1.2 Construct the MTA decomposition MP of the process Pt and find MTA spec-

trum (Nk, Ek), k = 1, . . . , d.

1.3 Select a corner point k0 of MTA spectrum (a point where the slope of the

spectrum changes from a higher to a lower value); and consider the corre-

sponding piece-wise linear approximation Lk0(t) of Pt with Nk0 segments.

1.4 Calculate preliminary alphabet values {ãi} applying either (5.9) and (5.11)

or (5.10) to the slopes si, i = 1, . . . , Nk0 of the linear segments from Lk0(t).

1.5 Obtain the alphabet estimate M̂ , {âi}i=1,...,cM by binning the values {ãi}
according to their multi-modal distribution.

Step 2. Estimate a priori initial probabilities using Eq. (5.12).

Step 3. Estimate a priori transitional intensities using Eq. (5.13).

Step 4. Estimate time-dependent volatility using the filter Eq. (2.2) with a priori

parameters from Steps 1,2,3.

Output: Time dependent distribution pi(Tk) of volatility, i = 1, . . . , M̂ , Tk ≤ T .

7 Examples

Here we apply our combined algorithm to three price series. First, we apply it to a synthetic

asset price with known true volatility structure and show that the alphabet estimation

and the filtering give very good results. Next, we analyze the daily dynamics of General

Electric shares traded at NYSE during 1962–2004. Finally, we estimate the volatility of

intraday trades for IBM during Nov. 1, 1990 – Jan. 11, 1991. In the latter cases neither

we know the true volatility, nor we can be sure that the asset dynamics are governed by

(2.1). Nevertheless, we give some indications that the proposed procedure gives reasonable

and stable results.

14



7.1 Synthetic prices

We simulate the log-price dynamics using (2.1) with µ = 0.05, {ai} = {0.1, 0.3, 0.5}, pi =

1/3, and

Λ =



−20 20 0

40 −60 20

60 0 −60


 [1/day].

Thus, the changes in volatility occur about 20-60 times a calendar day (calendar day equals

to 24 hours), or, the duration of each constant volatility interval varies roughly from 30 mins

to 1 hour; the higher the volatility the shorter the time to the volatility jump. The duration

of the synthetic series is 168 = 21× 8 = 7× 24 hours, which corresponds to 7 calendar days

(24 hours a day) or 21 business days (8 hours a day).

The intensity of observations is {ni} = {1, 3, 5}[1/min], which corresponds to a synthetic

time series of 17,575 observations. A fragment of this series is shown in Fig. 8 a. The first 151

hours were used to estimate the filter input parameters, and the filter was applied during the

last 17 hours. We do not illustrate here steps 1.1–1.3 of our algorithm since the results are

very similar to what was shown in Figs. 5–7 above. The histogram of initial estimates {ãi}
of the volatility alphabet is shown in Fig. 8 c. The three-modal structure of the volatility

alphabet is clearly detected; the corresponding estimates of the filter input parameters are

âi = {0.1109, 0.3057, 0.5045}, n̂i = {1.035, 3.003, 4.994}[1/min],

Λ̂ =



−31.30 15.15 16.15

37.42 −76.75 39.33

43.62 167.16 −210.78


 [1/day].

The estimates of the alphabet and observational intensities are very close to the true values,

while the estimate of the transitional intensities are of inferior quality. Nevertheless, as was

mentioned earlier, this latter estimation will produce a very little effect on the overall quality

of the filtering. Next, we apply the filter (2.2) to obtain the a posteriori probabilities. They

are illustrated in panel b, which shows the dynamics of p1(t) and p3(t) within the subinterval

of panel a. The values of p2(t) = 1 − p1(t) − p3(t) are not shown for visual convenience.

One can see that the a posteriori probabilities depict very closely the true structure of

volatility. It takes 3-5 observations to detect the volatility change, and there are only two

false detection within this interval (at t ≈ 160.6, 161.7 where p1 > p2,3). A similar picture

is observed at other times. These results suggest that in order to make a decision about

current volatility on the basis of a posteriori probabilities one can use the simplest rule

vT = ak with k := argmaxi [pi(T )]. A more stable way to define the posterior volatility is
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to use the expectation with respect to the posterior distribution:

E(vTk) :=

cM∑
i=1

pi(Tk)âi. (7.1)

The a posteriori volatility v̂t is then obtained by binning the posterior expectation (7.1) into

M̂ separate values

v̂t :=
{
âi, i = argmink=1,...,cM |E(vt)− âk|

}
. (7.2)

The corresponding values of the three measures of estimation quality (Sect. 4.1) are

SLR = 0.754, Str = 0.859, SL2 = 0.032.

Recalling that the ideal prediction would correspond to SLR = Str = 1, SL2 = 0 we conclude

that the filtering is of a very good quality. To further illustrate the overall quality of the

filter we show in panel d the empirical frequencies qij (4.2). The matrix is very close to

diagonal, which confirms the reliability of our estimation.

7.2 Daily data: General Electric

Here we estimate the volatility for General Electric company. Specifically, we consider daily

closing prices provided by Wharton Research Data Services [18]. We thus assume that

the observational grid is uniform with step of δ = 1 day (ignoring the fact that longer

intervals do exist between Fridays and Mondays as well as during holidays). The dynamics

of the original prices St ($/share) is shown in Fig. 9a. Below we work with the log-prices

Xt := log10 St. To estimate the volatility alphabet we use only the data during 1962-1998

(see Fig. 9a). MTA spectrum for the process Pt of (5.2) is shown in Fig. 9b. One sees clearly

the transition from a higher absolute slope (|s| ≈ 2) to a lower one (|s| ≈ 1) as the number

Nk of segments in our peace-wise linear decompositions increases. Transition occures within

a broad interval 25 < N < 150, which corresponds to decomposition levels 17 ≤ k ≤ 90.

The results of our estimation are stable with respect to particular choice of the level for

analysis. Figure 9c shows the histograms of initial volatility estimates ãi obtained at level

k = 17. The three-modal structure with modes at about {0.06, 0.1, 0.15} is prominent; a

similar three-modal stucture is observed at level k = 90 (panel d). The same results are

obtained at all intermediate levels 16 < k < 90 (not shown). Thus, our analysis suggests

M̂ = 3, {âi} = {0.06, 0.1, 0.15}, which we use to estimate initial probabilities and jump

intensities:

p̂i = {0.66, 0.26, 0.07}, Λ̂ =



−0.66 0.16 0.50

1.21 −1.81 0.60

3.58 2.14 −5.72


 [1/year].
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The above estimates are used as inputs for the filter (2.2). The posterior probabilities pi(t),

i = 2, 3, during 1998-1999 are shown in Fig. 10a. We also show for comparison the log-price

Xk (panel b) and absolute returns |∆k| = |Xk −Xk−1| (panel c). During the second half of

1998 the market witnessed a significant price drop of the GE shares (panel b) associated with

increased volatility nicely reflected in the dynamics of |∆t| (panel c). This volatility increase

is captured by the posterior probabilities shown in panel a. We found (not shown) that our

results are very stable with respect to the particular choice of the three-valued alphabet

corresponding to the distribution of Fig. 9 c,d (say, choosing {âi} = {0.05, 0.08, 0.15}, etc.).

The posterior expectation of the volatility at instant Tk is defined by (7.1). It can be used

to define the posterior volatility, which takes values from the alphabet {âi}. Specifically, we

smooth the posterior expectation using kernel K(t):

vκt :=

∫
K(t− s)E(vs) ds, (7.3)

and bin it into M̂ distinct values

v̂t := {âi, i = argmink|vκt − âk|}. (7.4)

We use the kernelK = I[−84 days, 0] to obtain the volatility estimate v̂t shown in the Fig. 11.

Panel a juxtaposes the periods of high volatility (v̂t = 0.15) and the largest absolute returns

|∆t| > 0.015. One sees the perfect agreement between the filter estimation and actual

increases of price jitter. Panel b zoomes up a 10-year period around the market crash of

19 Oct., 1987; here the shadowing (dark, light, none) depicts intervals with three distinct

volatility values (large, medium, small). Again, the correspondence between actual price

variations and the filter estimation is very good.

In contrast to the synthetic models, where the true volatility structure is known and can

be compared to the filter estimation, in this realistic example we do not know what the true

volatility is. To assess the quality of the filter in this case, we use empirical averages Ei,

i = 1, . . . ,M of absolute returns |∆k| of the log-price within intervals of constant a posteriori

volatility:

Ei =

∑ |∆k+1| δ(vTk − ai)∑
δ(vTk − ai)

. (7.5)

The corresponding values for the GE data are

E1 := 3.5× 10−3 ± 6.6× 10−5,

E2 := 4.3× 10−3 ± 5.0× 10−5,

E3 := 6.8× 10−3 ± 11.1× 10−5.

The positive correlation between the typical price returns and the filter volatility estimate

is obvious. This indirect quality analysis allows us to conclude that the suggested filter
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estimation procedure might be effective for realistic data sets, which might deviate from the

model (2.1) with Markov jump volatility.

Remark 7.1 At first glance, the reader could ask why do we need the filtering estimate,

if we can simply use estimation based only on price variations. We do a comparison of

that type in section 8, showing that, in general, the filtering procedure is more stable and

efficient.

7.3 Intraday data: IBM

In this section we estimate intraday volatility using the data for the IBM company during

Nov. 1, 1990 – Jan. 11, 1991. We use the data prior to January 11 to estimate the filter

input parameters, and then apply the filter during January 11 to estimate the volatility.

The data set includes 60,328 transactions; almost all of them occur between 9:30 AM and

16:30 PM. The transaction time is reported up to a second; the average time between two

consecutive transations (we call this interevent time) is 29 sec. In order to construct the

process Pt we preprocessed the data in the following way. First, all interevent times τi

larger than 2 hours were replaced with random times τ̃i from the empirical distribution of

interevent times shorter than 2 hours. This way we removed the long gaps associated with

nights, holidays, and long intraday breaks, and concentrated on the price dynamics during

the business hours. Second, if several transactions with different price were reported within

one second (so they have the same time tag), we separate them by 0.5 seconds; there were

6,548 such cases (10% of the data set).

The MTA spectrum for the corresponding process Pt is shown in Fig. 12a; it can be

coarsely approximated as

logEk ∝ 3/2 logNk.

To emphasize the existence of corner points, we show the normalized fitting error Ek×N1.4
k

as a function of the number Nk of segments in Fig. 12b. One sees clearly three corner

points that correspond roughly to the scales of 16 hours, 2.5 hours, and 40 minutes (scale is

defined here as the average duration of segments within a piece-wise linear approximation).

We choose the rightmost corner point k0 = 300 with the scale of 40 minutes for further

analysis. The piece-wise linear approximation at this level has 493 segments; the histogram

of the corresponding initial alphabet estimates ãi (Eqs. (5.9) and (5.11)) is shown in Fig. 13.

While there is no striking mutimodal structure, the choice of

âi = {0.19, 0.33, 0.53, 0.75}
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seems reasonable if one wants to represent the volatility as a Markov jump process. The

corresponding estimates of the filter parameters are:

p̂i = {0.51, 0.31, 0.12, 0.06}, n̂i = {1.62, 2.57, 3.78, 6.18}[1/min],

Λ̂ =




−2.75 0.61 0.88 1.26

1.32 −6.08 2.37 2.39

2.91 2.87 −8.55 2.76

5.65 8.86 5.61 −20.12


 [1/hour].

The filtering results are illustrated in Fig. 14, where we show the estimated volatility

and price of IBM shares during the morning hours on January 11, 1991. The a posteriori

volatility v̂t is obtained by binning the posterior expectation (7.1) into M̂ separate values

via (7.2).

The filter detected four volatility bursts. Two of them (9:35AM and 11:40AM) corre-

spond to a high trading intensity; one (9:50AM) to a rapid price increase; and one (10:40AM)

to intensive price oscillations (without the net change). We see that when price changes are

mild (in our example the price only changes by fixed increments of 0.125), the filter effec-

tively uses the information on the trading intensity to make a decision about the current

volatility.

8 Filtering vs. variation estimates

Here we compare the filter with an ad hoc estimation of the volatility based on absolute

returns.

8.1 Filter estimation

Recall that the filter calculates the posterior volatility distribution pi(t) = P (vt = âi),

i = 1, . . . , M̂ , where âi comprise the estimate of the volatility alphabet. We consider the

best least-square volatility estimation

ṽfilter
t =

cM∑
i=1

pi(t) âi.

8.2 Alternative estimation

An alternative estimation, ṽsmooth, uses the fact that the local slope of the process Pt (the sum

of absolute returns) is asymptotically proportional to the volatility vt (see (5.9)). Specifically,
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for a given w > 0 we define

ṽsmooth
t =

√
2

nt

Pt − Pt−w
w

=

√
2

nt

1

w

∑

k :Tk,Tk−1∈[t−w, t]
|XTk −XTk−1

|,

where

nt =
#{k : Tk ∈ [t− w, t]}

w
.

The choice of w depends on the structure of the volatility process, particularly, the jump

intensities Λ, and the observation intensities N . One wants to have as many observations

within the window [t − w, t] as possible, yet keeping the length w as short as possible in

order not to contaminate the estimation by periods when the window covers a volatility

jump. That is, we want w such that

min
i
ni � 1

w
� max

i
li,

where li =
∑

i6=k λik is the intensity of jumps from state i.

8.3 Binning

Notice that when we have the alphabet estimates Â = (âi), the values of ṽ = ṽfilter
t , ṽsmooth

t

can be binned to produce the final estimates

vt = {âi, i = argmink |ṽt − âk|}. (8.1)

We work below with such binned estimates vfilter
t , vsmooth

t .

8.4 Input parameters

We apply the volatility estimates vfilter and vsmooth to the synthetic time series with param-

eters

µ = 0.05, A = {0.1, 0.5}, Λ =

(
−1 1

1 −1

)
[1/hr]; N = {ni} = {1, 5}[1/min]

modeled during 7 days (168 hours), which consists of 31059 observations. In order to cal-

culate the volatility estimates we need to specify the values âi of the alphabet used for

binning (in case of the filter, this alphabet is also used to produce the posterior volatility

distribution.)
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We use four different versions of the alphabet Â:

Â1 = A
Â2 = A+ .05 = {0.15, 0.55}
Â3 = A ∪ 0.3 = {0.1, 0.3, 0.5}
Â3 = A ∪ {0.05, 0.2, 0.3, 0.4, 0.6} = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

The associated parameters used by the filter are µ̂ = µ,

Λ̂1 = Λ̂2 = Λ; Λ̂3 =



−1 0.5 0.5

0.5 −1 0.5

0.5 0.5 −1


 hr−1;

Λ̂4 =
{
λ̂ij

}
: λij =

{
0.5 0 < |i− j| ≤ 2

0 |i− j| > 2
;

N̂1 = N̂2 = N ; N̂3 = {1, 3, 5}min−1;

N̂4 = {0.5, 1, 2, 3, 4, 5, 6}min−1.

The parameter w of the estimation vsmooth was varied each time from from 30 sec. to 1

hour.

8.5 Performance

The sum of squared errors is used to measure the quality of our estimates:

Efilter =

∑
k

(
vTk − vfilter

Tk

)2

∑
k v

2
Tk

and similarly for Esmooth. The errors of the filter estimation are

Efilter
1 = 0.008; Efilter

2 = 0.022; Efilter
3 = 0.01; Efilter

4 = 0.017.

This demonstrates good quality and stability of the filter with respect to the input alphabet

and other parameters.

The results for vsmooth are shown in Fig. 15. The best estimation is always achieved at

w ≈ 4 min, confirming that the choice of this parameters is only dictated by Λ and N , and

is independent of A. The corresponding best fitting errors are

Esmooth
1 = 0.027; Esmooth

2 = 0.048; Esmooth
3 = 0.036; Esmooth

4 = 0.044,
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which is 2-3 times larger than the filtering errors. We notice also that the minima in Fig. 15

are quite sharp, which means that a slight change of parameter w from its optimal value

will cause a significant decrease in the estimation quality.

Acknowledgments: We are grateful to David Vere-Jones for his advice on effective

numerical modeling of Markov jump processes. We also thank Wharton Research Data

Services for providing the data for General Electric company.

9 Appendix

9.1 Proof of Proposition 5.1

We start with the following

Lemma 9.1 If volatility v and intensity n are constant within the interval [Tk−1, Tk] then,

given Tk−1, Tk, the conditional expectation Ek of |∆k| is given by

Ek (|∆k|) = v

√
2 δk
π

exp
{−β2

k

}
+ v b δk erf(βk), (9.1)

where

b :=
µ

v
− v

2
=

1

v

(
µ− v2

2

)
, βk :=

b
√
δk√
2
, δk := Tk − Tk−1 (9.2)

and

erf(a) :=
2√
π

∫ a

0

exp
{−z2

}
dz. (9.3)

The unconditional expectation can be written as

E (|∆k|) =
v√
2n

(
1 +

b2

2n

)−3/2

+ v bE[δk erf(βk)]. (9.4)

Proof: The proof of (9.1) is straightforward, integrating against normal density. Simi-

larly, the first term on the right-hand side of (9.4) is obtained integrating (9.1) against the

exponential density with intensity n.

We now proceed with the proof of Proposition 5.1. Define a set Bk, for a given, but

arbitrary ε > 0:

Bk =

{∣∣∣∣∣
k∑
i=1

(|∆i| − E |∆i|)
∣∣∣∣∣ >
√
ntε

}
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and denote by Nt the Poisson process of the number of observations by time t. Let 0 ≤ δ <

1/4 be a fixed number. We have

P (BNt) ≤ P
(|Nt − tn| ≤ t n3/4+δ, BNt

)
+ P

(|Nt − tn| > tn3/4+δ
)
. (9.5)

We recall that 1

E(Nt − nt)4 = nt(1 + 3nt) (9.6)

and use Markov inequality to find that the second term on the RHS of (9.5) satisfies

P
(|Nt − tn| > tn3/4+δ

)
= P

(|Nt − tn|4 > t4 n3+4δ
)

≤ nt(1 + 3nt)

t4 n3+4δ
=

1

t3 n2+4δ
+

3

t2 n1+4δ
. (9.7)

The sum of these terms over n = 1, . . . ,∞ is finite. As for the first term on the RHS of

(9.5), it is less than

P (∪k : |k−tn|≤t n3/4+δBk).

Since |∆i| − E |∆i| are independent random variables with mean zero, using Kolmogorov’s

inequality we get that this is smaller than

1

nt2ε2

∑

k : |k−tn|≤t n3/4+δ

V ar |∆k|.

It is easily checked that if b = 0

V ar |∆k| = v2

2n
,

and if b is not zero, it is still of the order 1/n. This shows that the first term on the RHS of

(9.5) is of the order n−5/4+δ, and the sum of such terms over n = 1, . . . ,∞ is finite. Therefore

∞∑
n=1

P (BNt) <∞

which, by Borel-Cantelli lemma, implies that

1

t
√
n

Nt∑
i=1

(|∆i| − E |∆i|) =
Pt
t
√
n
− Nt

t
√
n
E |∆1| a.s.−→ 0, as n→∞.

Using (9.6) and Markov inequality we find

P

(∣∣∣∣
Nt

nt
− 1

∣∣∣∣ > ε

)
= P (|Nt − nt|4 > (ntε)4) ≤ nt(1 + 3nt)

(ntε)4
.

1See http://mathworld.wolfram.com/PoissonDistribution.html, for example.
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The sum of these over n = 1, . . . ,∞ is finite, so that, by Borel-Cantelli lemma, Nt/(nt)

converges to one almost surely. This implies

Pt
t
√
n
−√nE |∆1| a.s.−→ 0, as n→∞.

Finally, since erf(·) is a bounded nonnegative function and since E[δk] = 1/n, we see from

(9.4) that √
nE |∆1| → v√

2
, as n→∞.

This completes the proof.

9.2 Multiscale Trend Analysis

Multiscale Trend Analysis (MTA) is a set of applied statistical techniques for time series

analysis that operate with trends — local linear approximations — of the series X(t) at

different scales. Formally, the time series X(t) observed at finite (regular or irregular) time

grid {ti}Ni=1 is represented by a tree MX , whose nodes correspond to linear trends within

X(t). The larger the scale at which the trend is observed, the higher the corresponding node

in the tree (referred to as hierarchy). The root (considered to be the top of the hierarchy)

corresponds to the global linear approximation L0(t), the leaves to the elementary linear

segments within [ti, ti+1], and each internal node to some appropriately chosen trend on an

intermediate scale. Specific features of the topological and metric structure of MX reflect

self-affine (global and local) properties of X(t), facilitate effective correlation analysis of time

series observed at irregular non-coincident time grids, and define invariants of the fractional

Brownian motions [17].

9.2.1 Representing time series as a tree

Here we outline the construction of the hierarchical tree MX . Its zero level (root of the

tree) is formed by the best least-square linear approximation L0(t) of X(t) over the entire

observational interval [t1, tN ]; thus L0(t) consists of a single linear segment. We define the

approximation error for L0(t) as

E0 =
N∑
i=1

|X(ti)− L0(ti)|2 . (9.8)

At the next step we want to evaluate the most prominent deviations of X(t) from the global

linear fit L0(t) and depict them by the first-level approximation, L1(t); it will consist of N1

linear segments and have the approximation error E1 defined similar to (9.8). Here we face

a two-fold problem: how to determine the optimal N1, and how to construct the optimal
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piece-wise linear approximation with N1 segments. We only discuss here the theoretical

approach to resolving these issues; the details of a corresponding computationally effective

algorithm are given in [17].

We introduce the quality measure for an arbitrary piecewise linear approximation L(t; n, e)

consisting of n > 1 linear segments and having total fitting error e:

H(n, e) =
log(e/E0)

n− 1
. (9.9)

We define L1(t) as the approximation L(t;N∗, E∗) that maximizes H(n, e):

H(N∗, E∗) = max
n,e

H(n, e). (9.10)

In the plane (n, log(e/E0)) the global linear approximation L0(t) corresponds to the point

p0 = (1, 0) whereas an arbitrary piecewise approximation Lk(t) corresponds to the point

pk = (Nk, log(Ek/E0)), Nk > 1, Ek < E0. The slope of the linear segment [p0, pk] shows the

increase of the fitting quality per one additional segment of approximation. By the criterion

(9.9)-(9.10) we choose the approximation with the maximal quality increase.

Remark 9.1 The criterion (9.9)-(9.10) can be compared to the famous Akaike Informa-

tion Criterion (AIC) widely used to resolve trade-offs between quality and complexity of

statistical models. In our settings, the AIC would minimize the score

AIC = log(e) + αn→ min (9.11)

with the common choice α = 2/N . In contrast to AIC, we do not specify α in advance but

instead look for such α that resolves (9.11) with minimal n > 1. In other words we choose

the AIC-optimal decomposition with minimal number of segments.

To construct the next level of the hierarchy, L2(t), we apply the above procedure to

one of N1 segments of the first-level approximation L1(t), and leave all other segments

unchanged. The choice of the segment to be decomposed is dictated by the maximization of

the corresponding error decrease E1−E2. The N2 segments of this approximation comprise

the second level of the hierarchy. Similarly, at each consecutive step, we apply the above

procedure to one of the segments of the current approximation Lk(t) to form the next

approximation Lk+1(t). By construction, each segment of the approximation Lk+1(t) is

embedded into or coincides with an appropriate segment from Lk(t); this is why they form

a well-defined hierarchy.

As a result, we obtain a series of piece-wise linear approximations Lk(t), k = 0, 1, . . . , d

of X(t). The approximations are of increasing detail: the larger the index k the larger the

number Nk of linear segments within Lk(t), the smaller the fitting error Ek, and the smaller

their average duration.
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9.2.2 MTA spectrum

Important element of our hierarchical analysis is the MTA spectrum: a graph showing the

fitting error Ek of approximation Lk(t) as a function of the number Nk of its linear segments.

By definition, this function is monotonously decreasing. For purely self-affine time series

characterized by a single Hurst exponent H the error Ek and Nk are connected via [17]

Ek = E0 N
−2H
k . (9.12)

This power-law relationship reflects the absence of characteristic scale in agreement with

the well-known general properties of self-affine time series [13]. Often it is advantageous to

consider the dependence of Ek on Nk in bi-logarithmic scale, where the relation (9.12) takes

a linear form:

logEk = logE0 − 2H logNk.

Noticeably, a typical log-price trajectory that obeys (2.1) is not a pure self-affine scale-

free series. The volatility jumps create a characteristic scale in the price dynamics: The

MTA spectrum is governed by the volatility structure while we consider long trends (longer

than the average duration of intervals of constant volatility); and by pure Brownian motion

at short trends. Accordingly, a typical MTA spectrum for the observed trajectories is not

linear but is characterized by a corner point k0, at which the spectrum slope breaks from

some |s| > 1 to |s| = 1; the latter corresponding to a pure Brownian walk (H = 1/2).

Generally, a break of the MTA slope from a higher to a lower absolute value characterizes

time series that describe a well-shaped motion accompanied by a random noise; further detail

and supporting numerical simulations can be found in [17]. The existence of a corner point

signals that the dynamics of a trajectory changes at this scale; hence we interpret the scales

larger than k0 (larger segment durations) as corresponding to the volatility structure, while

smaller to the random noise. The corner point can be formally defined as the point of the

maximal deviation from the best linear approximation to the spectrum.
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Figure 1: Filtering two-valued volatility. The posterior probability p1(t) = P (vt = a1)

is shown in the top panel. Bottom panel shows the observed process Xt (solid line) and

unobserved volatility vt (dashed line). Volatility alphabet is {a1 = 0.1, a2 = 1.0}; jump

intensities are λ12 = λ21 = 1; observational intensities are n(a1) = 50, n(a2) = 100. Shaded

intervals correspond to vt = 0.1. Drift µ = 0.05; if it is interpreted as 5% per year then the

conditional time units are years.
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Figure 2: Filtering two-valued volatility. Notations are the same as in Fig. 1. Volatility

alphabet is {a1 = 0.3, a2 = 0.4}; jump intensities are λ12 = λ21 = 1; observational intensities

are n(a1) = 50, n(a2) = 100. Shaded intervals correspond to vt = 0.3.
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two-valued model described in Sect. 4. An ideal estimation would yield SLR = 1, a random

guess SLR = 0. A level SLR = 0.7 is shown by the solid line.

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Control parameter bn−1/2

S
lo

pe
 e

st
im

at
io

n 
s i o

ve
r 

its
 e

xp
ec

ta
tio

n

Figure 4: Slope approximation si (5.5) over the Monte Carlo slope expectation as a function

of parameter |b|/√n. Clearly, this parameter controls the quality of approximation.
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Figure 5: Example of estimating a priori values of filter input parameters. a) Asset log-price

Xt (solid line, left axis) and its two-valued volatility vt (dashed line, right axis). Parameters

of the process are {ai} ≈ {0.316, 0.632}, µ = 0.05, λ12 = λ21 = 1, n(a1) = n(a2) = 103,

pi = 1/2. b) Process Pt (solid) and its piece-wise linear approximation L13(t) (dashed)

corresponding to the corner point 1 of MTA decomposition (see Fig. 6). The approximation

is offset by 1 upward for comparison. The global linear trend of Pt is extracted from both the

processes for visual convenience. c) Raw volatility estimate ṽt (left part) and distribution

of its distinct values (right part). True alphabet values are depicted by horizontal dashed

lines. d) Final volatility estimate v̂t. True alphabet values are depicted by horizontal dashed

lines. Shaded areas in all panels correspond to intervals with vt = a1 ≈ 0.316.
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Figure 6: MTA spectrum for the process illustrated in Fig. 5a. Shaded lines depict two

scaling regions with the transition zone between two corner points marked in the figure.

The right scaling region has the slope -1, which corresponds to a self-affine random walk

with no persistence. The left region deviates from this scaling depicting a non-random

structure within the process Pt; this structure is due to the characteristic scales of constant

volatility intervals, it can be easily seen in Fig. 5b.
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Figure 7: Example of estimating a priori values of filter input parameters. Notations are

the same as in Fig. 5 except that analysis corresponds to the corner point 2 of the MTA

spectrum (Fig. 6).

33



0.1

0.2

0.3

0.4

0.5

160 160.5 161 161.5 162 162.5 163
0

0.2

0.4

0.6

0.8

1

-0.024

-0.019

V
o

la
ti
lit

y
P

o
s
te

ri
o

r 
p

ro
b

a
b

ili
ty

A
s
s
e

t lo
g

-p
ric

e

Time, hours

0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

45

Estimated volatility

#
 o

b
s
e

rv
a

ti
o

n
s

0.11 0.3 0.5

0.929 0.056 0.015

0.071 0.835 0.094

0.010 0.177 0.813

Estimated alphabet

T
ru

e
 a

lp
h

a
b

e
t 0.1

0.3

0.5

c) d)

160 160.5 161 161.5 162 162.5 163a)

b)

Figure 8: Filtering synthetic asset price. a) Asset log-price Xt (right axis) and true un-

observed volatility vt (left axis). Distinct volatility values are depicted by shadows: dark

for vt = 0.5, light for vt = 0.3, none for vt = 0.1. b) Aposteriori probabilities p3(t) (dark

squares) and p1(t) (white squares) within the interval shown in a). c) Alphabet estimation.

Histogram of initial volatility estimates ãi clearly has a three-modal structure. Dashed lines

depict true volatility values. Shadows depict three groups used to define âi. d) Empirical

frequencies qij of Eq.(4.2). An ideal estimation would give a pure diagonal matrix. Our

estimation is indeed very good.
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Figure 9: Estimating volatility for General Electric company during 1962-1998. a) Asset

price St during 1962-2004; market splits are depicted by solid arrows. The shaded interval

1962-1998 is used for alphabet estimation. b) MTA spectrum for the process Pt that corre-

sponds to GE log-price dynamics. The transition from a higher slope (s ≈ −2) to a lower

one (s ≈ −1) as N increases is obvious; it occurres between levels k = 17 and k = 90. c),d)

Histogram of initial volatility estimates ãi at level k = 17 (panel c) and k = 90 (panel d).

Three-modal structure is prominent within this broad range of levels. Similar results are

obtained at all intermediate levels (not shown.)
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Figure 10: Estimating volatility for General Electric company during 1998-1999. a) Posterior

probabilities pi(t), i = 2 (light squares) and i = 3 (dark squares) that correspond to volatility

values v2 = 0.1 and v3 = 0.15. b) Dynamics of the log-price Xt. c) Absolute returns |∆t| of

the log-price Xt.
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Figure 11: Filtering volatility for General Electric company during 1964-2004. a) Intervals

with the largest value of the posterior volatility (v̂t = 0.15) (shaded intervals) and absolute

returns |∆t| > 0.015 of the log-price (squares). One observes the largest returns only within

the intervals recognized as high-volatility. b) Zoom of the interval 1982-1992, around the

market crash of Oct. 19, 1987. Dark shadow depicts intervals of the largest posterior

volatility (v̂t = 0.15), light shadow — medium (v̂t = 0.1), no shadow — lowest (v̂t = 0.06).
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Figure 12: Estimating volatility for IBM company during November 1, 1990 – January

11, 1991. a) MTA spectrum suggests a coarsely self-similar structure with Hurst exponent

H = 1.5; b) Renormalized spectrum – Ek×N1.4
k as a function of Nk. The gray strip depicts

existence of three corner points. We choose the rightmost one for our analysis. See Sect. 7.3

for details.
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1991. Histogram of initial estimates of volatility alphabet values âi, i = 1, . . . , Nk0 = 493,

k0 = 300 that correspond to the corner point shown in Fig. 12b.
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Figure 14: Filtering volatility for IBM company during January 11, 1991. a) Posterior

volatility v̂t of Eq. (7.2); b) Price dynamics during the same time interval. See discussion in

Sect. 7.3.
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