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 

Abstract— This paper aims to develop insights into Bayesian 

Truth Serum algorithm from the perspective of Shannon theory. 

We postulate a natural sequence of seven axioms that produce 

Bayesian Truth Serum scoring rule in such a way that it reflects 

quality of information.  This makes it possible to regard Bayesian 

Truth Serum as a measure of combined information-prediction  

quality in situations where respondents are asked to choose an 

alternative from a finite set and provide predictions of their 

peers’ propensities to choose. This is possible for finite and 

infinite sets of respondents. 

 
Index Terms— Bayesian Truth Serum, information entropy, 

Bayesian game, Shannon theory 

 

I. INTRODUCTION 

ayesian Truth Serum algorithm was developed in [1]. The 

Bayesian Truth Serum requires a single multiple-choice 

question.  The respondents are asked, in addition to providing 

their personal answer, to predict the percentage distribution of 

answers in the entire sample. The algorithm has applications 

in studies of public or expert opinions: voting intentions, 

product ratings, expert forecasting, and various crowdsourcing 

applications.  Published studies of Bayesian Truth Serum 

include application to assess the degree of learning in design 

courses [2], validity of deterrence in criminology [3], 

incentivizing digital pirates’ confession [4], and new product 

adoption in pharmaceutical setting  [5]. 

 

The algorithm has been studied from the economics point of 

view, its scoring rule aspects have been explored, but as far as 

we know it has not been approached from the Shannon theory 

point of view. The purpose of this paper is to emphasize that 

there is a connection between the Bayesian Truth Serum 
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algorithm and the Shannon Theory and that it lies at the very 

essence of the algorithm itself. 

 

There are two fundamental features of the Bayesian Truth 

Serum algorithm. One is that it is (truth) incentive-compatible 

(i.e. assuming that all other respondents tell the truth, it is in 

expectation most profitable for the selected respondent to tell 

the truth as well). Although highly desirable and important 

from the general point of view, this aspect is not of interest 

here.  

 

The second fundamental feature of the Bayesian Truth 

Serum algorithm is that its scoring rule ranks players 

according to their posterior probability on the actual 

percentage distribution of answers in the sample [1]. If that 

distribution is regarded as the ‘true state of nature,’ this 

ranking may be interpreted as a ranking according to domain 

expertise [6, 7]. The Bayesian Truth Serum algorithm is not 

the only incentive-compatible algorithm with this ranking 

property, as shown in [6].  

 

In this paper we focus on rankings, but approach the 

problem without using Bayesian game theory. Instead of 

having one game where many players provide their one-time 

answers and predictions, we view this situation in terms of 

pairwise duels between players. These duels result in transfer 

of points between the players according to some function P. 

We use simple simultaneous duels to show that under natural 

set of axioms compatible with Shannon theory we can derive 

the same scoring rule as [1].  

 In the rest of the paper we present the Bayesian Truth 

Serum algorithm formally in Section II. Our axiomatic system 

and main results are presented in Section III. We conclude the 

paper with the discussion in Section IV.  

 

II. BAYESIAN TRUTH SERUM ALGORITHM  

 

By 𝑅 we denote the set of players (respondents). We 

assume that 𝑅  is not empty, not a singleton, and at most 

countable (i.e. the cardinal number of the set 𝑅 satisfies 2 ≤
𝑐𝑎𝑟𝑑(𝑅) ≤ ℵ0). Suppose that the players are presented with a 

multiple choice question, offering a choice of 𝑚 ∈ ℕ ∖ {1} 

answers (we use the standard mathematical notation where ℕ 

is the set of natural numbers, ℝ is the set of real numbers, and 

ℝ ̅̅ ̅ = ℝ ⋃{−∞} ⋃{+∞} ). Each player picks a simple answer 
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(the one s/he thinks is the correct one) and gives a prediction 

in terms of probabilities on the distribution of m answers 

within 𝑅.1 More precisely, we present the answer of a player 

𝑟 ∈ 𝑅 as a pair of ordered m-tuples 

 

((𝑥1
𝑟 , … , 𝑥𝑚

𝑟  ); (𝑦1
𝑟 , … , 𝑦𝑚

𝑟  ))                    (1) 

 

where 𝑥1
𝑟 , … , 𝑥𝑚

𝑟  ∈ {0,1}, and 𝑦1
𝑟 , … , 𝑦𝑚

𝑟 ∈ [0,1] such that 

∑ 𝑥𝑘
𝑟𝑚

𝑘=1 = 1 and ∑ 𝑦𝑘
𝑟𝑚

𝑘=1 = 1. Exactly one of 𝑥𝑘
𝑟 is equal to 

one (the non-zero term which corresponds to the selected 

answer), while (𝑦1
𝑟 , … , 𝑦𝑚

𝑟 ) is a probability distribution on 

{1,2, … , 𝑚}. As a consequence, a complete data containing the 

answers of all players can be presented as a (finite or infinite) 

matrix (𝑋; 𝑌); it is of the order 𝑐𝑎𝑟𝑑(𝑅) × 2𝑚 and its rth row, 

𝑟 ∈ 𝑅, is given by (1). 

 

Based on (𝑋; 𝑌) we want to assign a numerical score for 

each player, say  

𝑢𝑟 = 𝑢𝑟(𝑋; 𝑌)                             (2) 

for player 𝑟 ∈ 𝑅. Eventually we expect our scores to be real-

valued, but here at the outset we shall not restrict ourselves 

and in principle we allow even for infinite values, i.e. 

 

𝑢𝑟 (𝑋, 𝑌) ∈    ℝ ̅̅ ̅̅                                 (3) 

 

A. Classic definition of the score in Bayesian Truth Serum 

 

Before stating our axioms we present how the score is 

defined by the Bayesian Truth Serum.  

 

We shall use the notation ∑  𝑠∈𝑅  in both finite and infinite 

case. If 𝑅 is finite, then ∑  𝑠∈𝑅  has its usual meaning of the 

sum over all elements of 𝑅. If 𝑅 is infinite, then we consider 

𝑅 = ⋃ 𝑅𝑛𝑛∈ℕ  , where  𝑐𝑎𝑟𝑑(𝑅𝑛) = 𝑛, and the meaning of 

 ∑  𝑠∈𝑅   is in the sense of lim
𝑛→∞

∑  𝑠∈𝑅𝑛
; the notation comes 

together with an assumption that the limit exists within  ℝ ̅̅ ̅̅ .  

Similarly, the meaning of  (𝑎𝑣) ∑  𝑠∈𝑅   is 
1

𝑐𝑎𝑟𝑑(𝑅)
∑  𝑠∈𝑅   in the 

case of a finite R, while in the case of an infinite R it is 

lim
𝑛→∞

1

𝑛
∑  𝑠∈𝑅𝑛

. With this notation in mind, we consider 𝑥 ̅: =

(𝑥1̅̅̅, … , 𝑥𝑚̅̅ ̅̅ ) where, for k=1,…,m 

 

𝑥𝑘̅̅ ̅: =  (𝑎𝑣) ∑ 𝑥𝑘
𝑟

𝑠∈𝑅

 

 

i.e. arithmetic means of X-columns, and 𝑦̂ ∶= (𝑦1̂, … , 𝑦𝑚̂) 

where, for k=1,…,m 

ln(𝑦𝑘̂) ≔ (𝑎𝑣) ∑ ln (𝑦𝑘
𝑠

𝑠∈𝑅

) 

i.e. geometric means of Y-columns. 

 

 
1 The latter question is usually asked in the following way: “please 

estimate the percentage of your peers who will choose answer k”, the question 
is repeated for each k=1,..,m. 

Using the notation above, the algorithm in [1] is given as  

 

𝑢𝑟(X, Y) ∶=  ∑ 𝑥𝑘
𝑟𝑚

𝑘=1  ln
𝑥𝑘̅̅ ̅̅

𝑦𝑘̂
+  ∑ 𝑥𝑘̅̅ ̅𝑚

𝑘=1  ln
𝑦𝑘

𝑟

𝑥𝑘̅̅ ̅̅
           (4) 

 

where 𝑟 ∈ 𝑅. The first part of the sum is the information score, 

while the second one is the prediction score [1].  

III. AXIOMATIC SYSTEM 

 

Our goal in this paper is develop an axiomatic system for (4) 

that is compatible with Shannon theory. In our approach 

players choose an expert among themselves via simultaneous 

conceptual duels. Each duel has a “challenger”, say player 𝑟 ∈
𝑅, and an “offender”, say player 𝑠 ∈ 𝑅.2 We denote such duel 

as 𝑟 → 𝑠. Each respondent plays a duel with every other 

respondent, including oneself. 

 

Each duel 𝑟 → 𝑠 ends with a transfer of points from player r 

to player s. We denote the number of transferred points by 

 

𝑇𝑟→𝑠 = 𝑇𝑟→𝑠 (𝑋; 𝑌) ∈ ℝ    .                          (5) 

 

We can think of positive 𝑇𝑟→𝑠 as the winning case for the 

offender, while negative 𝑇𝑟→𝑠 means that the challenger 

prevails. All the possible duels are to be performed (including 

the duel with oneself) in order to determine scores 𝑢𝑟 for all 

respondents 𝑟 ∈ 𝑅. In particular, if R is finite, there will be 

[𝑐𝑎𝑟𝑑(𝑅)]2 duels.  

Let us introduce the basic rule for a duel. For every 𝑟 ∈ 𝑅 

the score 𝑢𝑟 equals the number of received points minus the 

number of given points, i.e. 

 

𝑢𝑟 = 𝑢𝑟(X, Y) = ∑ 𝑇𝑠→𝑟 (𝑋; 𝑌)𝑠∈𝑅  -  ∑ 𝑇𝑟→𝑠 (𝑋; 𝑌)𝑠∈𝑅     (6) 

 

There are two immediate important consequences of (6). 

First, assuming that all the sums are finite-valued (which is the 

only interesting case), the duel is a zero-sum game, 

 

∑ 𝑢𝑟
𝑟∈𝑅 = ∑ ∑ 𝑇𝑠→𝑟

𝑠∈𝑅𝑟∈𝑅 − ∑ ∑ 𝑇𝑟→𝑠
𝑠∈𝑅𝑟∈𝑅 = 0           (7) 

 

The second consequence of (6) is that the description of 𝑢𝑟 

reduces to the description of 𝑇𝑟→𝑠. Hence, we present a set of 

axioms about 𝑇𝑟→𝑠 that generate the Bayesian Truth Serum 

algorithm (4). For each axiom we give an intuitive 

justification (which may include some ideas from statistics) 

and a formal statement (which is always going to be 

deterministic). 

Our first axiom is very much in the spirit of medieval duels. 

We can interpret it as “the offender chooses the playground 

for the duel”.  

 

Axiom 1. The challenger r will transfer points to the 

offender s, based on the x answer of the offender s. More 

 
2 We use traditional duel terminology, where one player (offender) offends 

the other (challenger), who in turn challenges the first player to a duel  
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precisely, for every 𝑟, 𝑠 ∈ 𝑅 and for every 𝑘 ∈ {1, … , 𝑚}  

there is 𝑃𝑘
𝑟𝑠(𝑋; 𝑌) ∈ ℝ such that  

 

𝑇𝑟→𝑠 (𝑋; 𝑌) = ∑ 𝑥𝑘
𝑠𝑚

𝑘=1  𝑃𝑘
𝑟𝑠(𝑋; 𝑌)              (8) 

 

Observe that, among others, Axiom 1 reduces our analysis 

from  𝑇𝑟→𝑠 to 𝑃𝑘
𝑟𝑠. Observe also that, for every 𝑠 ∈ 𝑅, there is 

exactly one 𝑘 ∈ {1, … , 𝑚} such that 𝑥𝑘
𝑠 = 1. Hence, we can 

think of that 𝑘 as being the function of s, i.e. 𝑘 = 𝑘(𝑠). It 

follows then that (8) becomes 

 

𝑇𝑟→𝑠 (𝑋; 𝑌) = 𝑃𝑘(𝑠)
𝑟𝑠 (𝑋; 𝑌)             (9) 

 

In order to understand the second axiom, we introduce the 

following partition of R 

 

𝑅𝑘 ∶= {𝑠 ∈ 𝑅 | 𝑥𝑘
𝑠 = 1},     𝑘 = 1, … , 𝑚            (10) 

 

Obviously, the partition 𝑅 = 𝑅1 ⋃ … . ⋃ 𝑅𝑚 is a function of 

X. Fix k for a moment and consider 𝑅𝑘, which is a subset of 

players who choose the same answer 𝑘. In general, the number 

of points 𝑃𝑘
𝑟𝑠 may vary as s changes within 𝑅𝑘. The purpose of 

our second axiom is to prevent this from happening, i.e. that 

axiom can be thought of as “the egalitarian principle within 

𝑅𝑘. "  

 

Axiom 2. Given 𝑟 ∈ 𝑅 and 𝑘 ∈  {1, … , 𝑚} we have  

 

(𝑠, 𝑠′ ∈ 𝑅𝑘  ⇒  𝑃𝑘
𝑟𝑠(𝑋; 𝑌) = 𝑃𝑘

𝑟𝑠′
(𝑋; 𝑌) ). 

 

Axiom 2 says that if the offenders 𝑠, 𝑠′ ∈ 𝑅 choose the same 

answer, then in a duel with every challenger they will receive 

the same number of points. Observe that Axiom 2 includes 

even the cases when for some k the set 𝑅𝑘 may be an empty 

set; in this case the implication in Axiom 2 is true, since the 

premise of the implication is never true. Using a slight abuse 

of notation (think of k=k (s)), Axiom 2 implies that 

 

 𝑃𝑘
𝑟𝑠(𝑋; 𝑌) = 𝑃𝑘

𝑟(𝑋; 𝑌)                            (11) 

 

In order to understand the third axiom, observe that by 

choosing the answer k, the offender s decides (given that r is 

known) on a type of function 𝑃𝑘
𝑟  that will be used in the duel 

𝑟 → 𝑠. However, the 𝑃𝑘
𝑟  will in general still depend on (𝑋; 𝑌). 

Our next axiom can be thought of as strengthening the Axiom 

1. The offender s chooses the playground k, and in doing so it 

reduces the variable dependence accordingly. 

 

Axiom 3.  For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1, … , 𝑚},  

 

𝑃𝑘
𝑟(𝑋; 𝑌) = 𝑃𝑘

𝑟((𝑥𝑘
𝑞

)𝑞∈𝑅; (𝑦𝑘
𝑞

)𝑞∈𝑅) 

 

Next we turn to Axiom 4 which has deterministic form, and 

which can be justified using some ideas from statistics. One of 

the main problems in statistical analysis is to make inference 

about some unknown parameter 𝜃. The inference is based on 

the information given in a sample 𝑋1, … , 𝑋𝑛. In most cases the 

observed sample 𝑥1, … , 𝑥𝑛 is just a long list of numbers, which 

can be difficult to interpret directly. Therefore, we employ the 

principle of data reduction to obtain some statistic 𝑡 =
𝑇(𝑋1, … , 𝑋𝑛) which simplifies our analysis. There are various 

data reduction principles: among others these are sufficiency 

principle, the equivariance principle and the likelihood 

principle. In this paper we are particularly interested in the 

sufficiency principle, which relies on the notion of sufficient 

statistic for 𝜃. If t is such a statistic, then whenever we have 

two sample points 𝑥 = (𝑥1, … , 𝑥𝑛) and 𝑥′ = (𝑥′1, … , 𝑥𝑛′) with 

the property 𝑇(𝑥) = 𝑇(𝑥′), then the inference about 𝜃 is the 

same regardless whether 𝑥 or 𝑥′ is observed. Typical example 

is a Bernoulli sample from which we infer about the 

“probability of success”, p. It is well known and easy to 

understand intuitively that 𝑋̅ ∶=  
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1  is an example of a 

sufficient statistic regarding p.  

We would argue here that the X-part of our data is akin to 

the Bernoulli sample set-up. We are interested in 𝜔 =
(𝜔1, … , 𝜔𝑛), where 𝜔𝑘 gives the actual fraction of the 

population that thinks k is the correct answer to the original 

question. Hence, since we are interested in 𝜔𝑘, then the 

average value gives as much information about 𝜔𝑘 as the 

entire k-th column of the matrix X, i.e. (𝑥𝑘
𝑞

)𝑞∈𝑅. Therefore, we 

term our fourth axiom “the data reduction principle for X”.  

 

Axiom 4. For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1, … , 𝑚},  

 

𝑃𝑘
𝑟 ((𝑥𝑘

𝑞
)

𝑞∈𝑅
; (𝑦𝑘

𝑞
)

𝑞∈𝑅
) = 𝑃𝑘

𝑟(𝑥𝑘̅̅ ̅; (𝑦𝑘
𝑞

)𝑞∈𝑅) 

 

Our second data reduction principle deals with Y. Our 

axioms so far provided the offender s with the advantage to 

“choose the playground” k. In the next axiom we give an 

advantage to the challenger r by giving him/her an option to 

“choose the weapon”. We can think of it as allowing the 

challenger to select some information from the kth column of Y 

in order to predict 𝜔𝑘. We assume that the challenger is very 

self-confident and always keeps with his/her own choice i.e. 

𝑦𝑘
𝑟 . This gives us the data reduction principle for Y. 

 

Axiom 5. For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1, … , 𝑚},  

 

𝑃𝑘
𝑟(𝑥𝑘̅̅ ̅; (𝑦𝑘

𝑞
)𝑞∈𝑅) = 𝑃𝑘

𝑟(𝑥𝑘̅̅ ̅; 𝑦𝑘
𝑟) 

 

Observe that our axioms have reduced a function defined on 

a matrix (𝑋; 𝑌)  to a function defined on a pair of numbers   

(𝑥𝑘̅̅ ̅; 𝑦𝑘
𝑟) which are between 0 and 1. However, on this level of 

generality we still allow the form of the function to change 

with r or with k (i.e. the function can vary with the choice of 

different players or answers). A system that would allow for 

such level of generality would not be very practical, as for 

every k and every r we would have a different function 𝑃𝑘
𝑟 . 

Hence we opt for a more robust selection and introduce the 

following “universality axiom”. 
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Axiom 6. There exists a function 𝑃: [0,1] × [0,1] → ℝ such 

that for every 𝑟 ∈ 𝑅 and for every 𝑘 ∈ {1, … , 𝑚} we have 

𝑃𝑘
𝑟 = 𝑃. 
 

In other words, Axiom 6 insures that function 𝑃𝑘
𝑟  is the 

same for every player r and for every answer k.  

 

We believe that the first six axioms are natural and easy to 

accept. Their combined effect is that, for every 𝑟, 𝑠 ∈ 𝑅 

 

𝑇𝑟→𝑠 (𝑋; 𝑌) = ∑ 𝑥𝑘
𝑠𝑚

𝑘=1  𝑃(𝑥𝑘̅̅ ̅; 𝑦𝑘
𝑟)                  (12) 

 

Let us now turn our attention to the last and the most 

demanding axiom. In order to justify it, we borrow ideas from 

information theory3. We employ again a comparison with the 

Bernoulli probabilistic model; we think of both 𝑥𝑘̅̅ ̅ and 𝑦𝑘
𝑟  as 

estimates of the probability of success, say 𝑝𝑘.  

Intuitively speaking, let us think of 𝑃(𝑥𝑘̅̅ ̅; 𝑦𝑘
𝑟) as an estimate 

of some function  ℎ(𝑝𝑘), where ℎ awards points with the 

intention of measuring the uncertainty of the associated 

Bernoulli model. If we have two independent Bernoulli 

random variables U (with success probability p) and V (with 

success probability q), then the probability of joint success is 

pq. Following the same argument as in [8], page 6, it is natural 

to require ℎ(𝑝𝑞) = ℎ(𝑝) + ℎ(𝑞). By translating this 

requirement to the language of P, we obtain 

 

𝑃(𝑥(𝑝) ∙ 𝑥(𝑞);  𝑦(𝑝) ∙ 𝑦(𝑞))

= 𝑃(𝑥(𝑝);  𝑦(𝑝)) + 𝑃(𝑥(𝑞);  𝑦(𝑞)) 

 

As in [8] we exclude the case of zero and treat it separately 

(see also [1]). Hence, we introduce the additivity property 

axiom in the following form. 

 

 

Axiom 7. The restriction 𝑃|⟨0,1]×⟨0,1] of the function P given 

in (12) is a continuous function such that, for every 𝑢 ∈ ⟨0, 1], 
𝑃(𝑢, 𝑢) = 0, and for every 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ ⟨0, 1],  

 

𝑃(𝑢1𝑢2, 𝑣1𝑣2)= 𝑃(𝑢1, 𝑣1) + 𝑃(𝑢2, 𝑣2). 

 

Observe that if the selected “playground information” of the 

offender results in the 𝑥𝑘̅̅ ̅ which is exactly equal to the 

“challenger information”, then the natural outcome is “a 

draw”, i.e. 𝑃(𝑢, 𝑢) = 0. Obviously, as in the Shannon theory, 

the consequence of the Axiom 7 is that one can rely on one of 

the well-known functional equations from mathematics. More 

precisely, the following result is standard and well-known. 

 

Lemma. If ℎ: ⟨0, 1] → ℝ  is continuous and such that, for 

every 𝑢, 𝑣 ∈  ⟨0, 1], ℎ(𝑢𝑣) = ℎ(𝑢) + ℎ(𝑣), then ℎ(𝑢) = 𝑎 ∙
𝑙𝑛(𝑢), where 𝑎 = −ℎ(𝑒−1). 

 

 
3 In particular, one may consult a chapter on a measure of information in 

[8] with the emphasis on section 1.2. 

Recall that the additivity property is very strong. The 

conclusion of the Lemma follows even with much milder 

requirements than continuity on function h; for example it is 

sufficient to require monotonicity or measurability. Although 

this would allow us to reduce the requirement on continuity 

given in Axiom 7, in order to avoid unnecessary mathematical 

intricacies we presented the Axiom 7 in the above form. 

Namely, to construct non-measurable additive functions one 

needs to go into details about “the axiom of choice” and we 

think that from the point of view of various applications it is 

perhaps not necessary to go into such “axiom minimization” 

issues further.  

 

Using Lemma it is not difficult to see that Axiom 7 reduces 

function P to a particular form. 

 

Corollary. If a function 𝑃: ⟨0, 1] × ⟨0, 1] → ℝ satisfies 

Axiom 7, then there exists 𝑎 ∈  ℝ such that, for every 𝑢, 𝑣 ∈
 ⟨0, 1], 

 

𝑃(𝑢, 𝑣) = 𝑎 ∙ 𝑙𝑛 (𝑢/𝑣) 

  

Proof. Take 𝑢1 = 𝑢,  𝑢2 = 1, 𝑣1 = 𝑣,  𝑣2 = 1  in Axiom 7. 

We obtain 𝑃(𝑢, 𝑣) = 𝑃(𝑢, 1) + 𝑃(1, 𝑣). We start with the 

function 𝑢 → 𝑃(𝑢, 1). If we apply Axiom 7 with 𝑣1 = 𝑣2 = 1, 
we obtain 

𝑃(𝑢1𝑢2, 1) = 𝑃(𝑢1, 1) + 𝑃(𝑢2, 1). 
 

Hence, 𝑢 → 𝑃(𝑢, 1) satisfies the requirement of the Lemma. 

We conclude that there exists 𝑎 ∈  ℝ such that 𝑃(𝑢, 1) = 𝑎 ∙
𝑙𝑛 (𝑢) . 

 

Consider now the function 𝑣 → 𝑃(1, 𝑣). If we apply Axiom 7 

with 𝑢1 = 𝑢2 = 1, we obtain  

 

𝑃(1, 𝑣1𝑣2) = 𝑃(1, 𝑣1) + 𝑃(1, 𝑣2). 
 

Again, using Lemma, we conclude that there exists 𝑏 ∈  ℝ 

such that 𝑃(1, 𝑣) = 𝑏 ∙ 𝑙𝑛 (𝑣) . 

 

Finally, using 𝑃(𝑢, 𝑢) = 0 and 𝑃(𝑢, 𝑢) = 𝑃(𝑢, 1) +
𝑃(1, 𝑢) =  𝑎 ∙ 𝑙𝑛 (𝑢)+ 𝑏 ∙ 𝑙𝑛 (𝑢),  we obtain 𝑏 = −𝑎.  Hence, 

for every 𝑢, 𝑣 ∈  ⟨0, 1], it follows 𝑃(𝑢, 𝑣) = 𝑎 ∙ 𝑙 𝑛 (
𝑢

𝑣
).   

 

                                             Q.E.D. 

 

 

Remark. We need to decide on a particular choice of the 

normalizing constant 𝑎 ∈  ℝ from the previous Corollary. 

Suppose for the moment that the challenger r has selected 

𝑦𝑘
𝑟 = 1,  for some k. This implies 𝑦𝑙

𝑟 = 0 for all 𝑙 ≠ 𝑘, i.e. the 

challenger has put his entire trust on k. If, in this case, “the 

playground chosen by the offender” is indeed k, then it is the 

challenger who should earn points in this duel. More precisely, 

if  0 < 𝑢 < 1, then 𝑃(𝑢, 1) < 0, and it follows that 

 𝑎 > 0           (13) 
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What is then the natural choice for the constant a? This is 

now just the matter of normalization. Suppose for the moment 

that all offenders have chosen playground k. In that case the 

challenger would receive in total4 −𝑎 ∙ 𝑐𝑎𝑟𝑑(𝑅) ∙ 𝑃(𝑥𝑘̅̅ ̅; 1) 

points in the finite case, and lim
𝑛→∞

−𝑎(𝑅𝑛) ∙ 𝑐𝑎𝑟𝑑(𝑅𝑛) ∙

𝑃(𝑥𝑘̅̅ ̅; 1) points in the infinite case. It is natural to normalize 

so that the total is −𝑃(𝑥𝑘̅̅ ̅; 1) points. Hence we define the 

constant a to be 

     𝑎 =
1

𝑐𝑎𝑟𝑑(𝑅)
     in finite case, or 

               𝑎(𝑅𝑛) =
1

𝑐𝑎𝑟𝑑(𝑅𝑛)
   in the infinite case.    (14) 

         

 

Theorem. If the scoring system satisfies Axioms 1-7 and 

condition (14), then the resulting system is the Bayesian Truth 

Serum algorithm, i.e. 𝑢𝑟 satisfies (4). 

 

Proof.  Without loss of generality we present the proof for 

the finite case. In the infinite case we can use exactly the same 

proof under the limit sign lim
𝑛→∞

1

𝑛
∑  𝑠∈𝑅𝑛

, so we do not consider 

the infinite case separately. We proceed with the proof in the 

finite case. 

 

Using (12) and the Corollary, we obtain 

 

𝑢𝑟 = 𝑢𝑟(X, Y) = ∑ 𝑇𝑠→𝑟 (𝑋; 𝑌)𝑠∈𝑅  -  ∑ 𝑇𝑟→𝑠 (𝑋; 𝑌) =𝑠∈𝑅     

 

= ∑ ∑ 𝑥𝑘
𝑟

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
(ln

𝑥𝑘̅̅ ̅

𝑦𝑘
𝑠) − ∑ ∑ 𝑥𝑘

𝑠

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
(ln

𝑥𝑘̅̅ ̅

𝑦𝑘
𝑟) 

 

The first sum becomes 

 

∑ ∑ 𝑥𝑘
𝑟

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
(ln(𝑥𝑘̅̅ ̅) − ln(𝑦𝑘

𝑠)) = 

 

= ∑ 𝑥𝑘
𝑟

𝑚

𝑘=1

[
1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln(𝑥𝑘̅̅ ̅) −

𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln(𝑦𝑘

𝑠)

𝑠∈𝑅

] 

 

 

Since the choice of k depends on r (not on s), we obtain 

 
1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln(𝑥𝑘̅̅ ̅) =

𝑠∈𝑅

ln(𝑥𝑘̅̅ ̅) 

 

On the other hand, 
1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln(𝑦𝑘

𝑠)

𝑠∈𝑅

= (𝑎𝑣) ∑ ln(𝑦𝑘
𝑠)

𝑠∈𝑅

= ln(𝑦𝑘̂) 

 

It follows that the first sum equals ∑ 𝑥𝑘
𝑟𝑚

𝑘=1  ln (
𝑥𝑘̅̅ ̅̅

𝑦𝑘̂
), i.e. 

 
4 In total here means from all the offenders. 

equals the information score in (4). For the second sum we 

obtain  

− ∑ ∑ 𝑥𝑘
𝑠

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
(ln

𝑥𝑘̅̅ ̅

𝑦𝑘
𝑟) = ∑ ∑ 𝑥𝑘

𝑠

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
ln

𝑦𝑘
𝑟

𝑥𝑘̅̅ ̅
= 

 

 

= ∑ ln
𝑦𝑘

𝑟

𝑥𝑘̅̅ ̅
 (

1

𝑐𝑎𝑟𝑑(𝑅)
 ∑ 𝑥𝑘

𝑠

𝑚

𝑘=1

)

𝑚

𝑘=1

= ∑ 𝑥𝑘̅̅ ̅ln
𝑦𝑘

𝑟

𝑥𝑘̅̅ ̅
 

𝑚

𝑘=1

 

 

 

This is equal to prediction score in (4).  

                    Q.E.D. 

 

 

IV. CONCLUSION 

 

Formula (6) describes a large class of ranking systems 

which are all based on totality of the points players receive 

after the sequence of duels is performed. Every player 

performs two duels against every other player: one time as an 

offender and one time as a challenger. These duels are 

deterministic and in principle they work in the same way for 

the finite and the infinite number of players. 

As in the Shannon theory, the key function involved is the 

logarithm. Hence, it seems plausible that the Bayesian Truth 

Serum may be somewhat connected to the notion of entropy. 

The connection is rather subtle, and it exists only in the 

infinite case where we take into account full Bayesian 

stochastic approach together with the exchangeability 

assumption on the set of players (respondents). The de Finetti 

theorem guarantees that there is an underlying governing 

random variable (we call the outcomes of this variable “states 

of nature”), which represents various possible belief systems 

within the population. For each 𝑘 ∈ {1, … , 𝑚} and for every 

state of nature, say i, we consider conditional probabilities 

𝑧𝑘
𝑖 = 𝑃𝑟𝑜𝑏(𝑠𝑡𝑎𝑡𝑒 𝑖| 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑘), so called posteriors. It is 

shown in [1] 5 that for the true state of nature, assuming that 

𝑥𝑘
𝑟 = 1, we have that the Bayesian Truth Serum scoring rule is 

given by  

 

𝑢𝑟 = ln(𝑧𝑘
𝑖 ) + 𝐴 

 

The term A does not reflect ranking and ensures that the zero-

sum property is satisfied. Let us denote 𝑍𝑘 = {𝑧𝑘
𝑖 ∶

𝑖 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑛𝑎𝑡𝑢𝑟𝑒}. Hence, the conditional expectation can be 

expressed as 

 

𝐸(𝑢𝑟|𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑘) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑍𝑘) + 𝐴 

 

Observe however that the 𝑢𝑟 ranking is not based on 

entropy, but rather on 𝑧𝑘
𝑖  itself. Thus it more resembles the 

maximum likelihood estimator based on posteriors.  

 

 
5 For more details see also [6] 
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Observe that an essential feature of the BTS algorithm is 

that it simultaneously measures the quality of information and 

prediction. We emphasize that the system of axioms in this 

paper does not use the zero-sum property as the distinguishing 

one among various algorithms of the form (6) (compare this to 

the characterization of BTS n [6]). 

 

So far Bayesian Truth Serum bas been successfully tested 

for human respondents, hence the importance of incentive-

compatibility. By setting aside incentive-compatibility and 

focusing on the ranking system, we believe that the algorithm 

can be applied in the context where players are machines 

instead of humans. One application would be measuring 

information-prediction capability in such various fields as 

meteorology, finance, medicine, etc. 
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