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Abstract

We find the optimal time for entering a joint venture by two firms, and the op-

timal linear contract for sharing the profits. We consider three contract designs, the

risk-sharing, the timing-incentive and the asymmetric contract decisions design. An

important result we establish is that if the firms are risk-neutral and if the cash pay-

ments are allowed, all three designs are equivalent. However, if at least one of the two

firms is risk averse, the optimal contract parameters may vary significantly across the

three designs and across varying levels of risk aversion, as illustrated in our numer-

ical exercises. We also analyze a dataset of joint biomedical ventures, that exhibits

general agreement with our theoretical predictions. In particular, both royalty per-

centage payments and cash payments are mostly increasing in the smaller firms length

of experience, and the time of entry happens sooner for more experienced small firms.
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1 Introduction

Innovation is a crucial factor for a company’s survival and success, and co-development

partnerships are an increasingly utilized way of improving innovation effectiveness. These

partnerships are working relationships between two or more partners with the goal of creating

and delivering a new product, technology or service (Chesbrough and Schwartz, 2007). While

the traditional business model centers on a company which develops a new product in-house

(from own R&D) and then produces, markets and sells it using its own internal resources, the

new model of open innovation includes co-development partnerships. In this way different

partners’ resources and capabilities can be optimally combined, thus creating significant

reductions in R&D expense and time to market. According to Quinn (2000), using co-

development ”leading companies have lowered innovation costs and risks by 60% to 90%,

while similarly decreasing cycle time and leveraging their internal investments by tens to

hundreds of times”.

In technology based industries incumbent firms frequently form strategic alliances with

smaller firms and new entrants (Gulati, 1998; Hagedoorn, 1993). In pharmaceutical industry

large firms with hefty R&D budgets and internal R&D capabilities have actively used the

”market for knowhow” through contractual arrangements to acquire access to new technolo-

gies. On the other hand, small entrepreneurial firms seek alliances with large firms to avail

themselves of the resources that are too costly, or too difficult to build internally.

In this paper we focus on a co-development alliance between a firm which is the originator

of the project or the new product idea, called firm S (for ”small”) and a firm which provides

research and other lacking resources necessary for product development, called firm L (for

”large”). We model the decision to enter co-development using real options theory. In

particular, we examine how the project entry time depends on the asymmetry of information

and on the relative bargaining power.

Our paper relies on real options methodology in modeling interfirm alliances. Real

options framework recognizes that investment opportunities are options on real assets, and

as such is able to provide a way to apply the methods of pricing financial options to the

problems related to firms investment decisions. Most of the literature considers the case

of a single firm’s R&D investment decision (Mitchell and Hamilton 1988; McGrath 1997;

Folta 1998), as well as the timing of the investment (Dixit and Pindyck 1994; Sarkar 2000;

Henderson and Hobson 2002; Lambrecht and Perraudin 2003; Henderson 2007; Miao and

Wang 2007), the development of organizational capabilities (Kogut and Kulatilaka 2001),

and entry decisions (Miller and Folta 2002). Real options have been used to model firm

alliances such as joint ventures (Kogut 1991; Reuer and Tong 2005), acquisitions (Folta

and Miller 2002), and university-firm contracts for commercializing technology (Ziedonis,

2007). An important paper by Habib and Mella-Barral (2007) studies incentives to form
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joint ventures by detailed modeling of the benefits of acquiring knowhow. Unlike our paper,

they focus on the time of dissolution of the venture rather than the time of entry, and their

model is different from ours. The option to exit early is also studied in Savva and Scholtes

(2007), where it is shown that it improves the efficiency of contracts.

In these alliances there is often an asymmetry of information which is then dealt with

through contractual arrangements. Much of the economic modeling on company relation-

ships is framed within an agency model (e.g. Bolton and Dewatripont 2005; Crama et al.

2007), where asymmetric information and risk aversion are studied as sources of inefficiency.

Contractual arrangements in such alliances usually involve up-front payments plus royalties

that protect prospective licensee from the risk; namely when the licensee estimates the risk

to be high they can attempt to shift the balance of payments away from up-front fees toward

future royalties on end sales, and thus transfer the project risk toward the licensor. Often

milestone payments are used for successfully reaching certain stages in product develop-

ment. Such milestone and royalty contracts arising from asymmetric information have been

studied in the literature, dealing with issues of risk sharing between the two firms (Amit et

al. 1990), as well as adverse selection and moral hazard (Gallini and Wright 1990; Crama

et al. 2007).

1.1 Contributions

Our contributions consist of the following:

- (i) We add to the real options literature by modeling two companies deciding on entry

time, instead of only one company (the existing real options literature mostly deals with

the latter case). We consider three different contract designs. We first study the case of

risk-sharing between the two firms, and we find the Pareto optimal contract, that is we

maximize a linear combination of the two firms’ objectives. This can be interpreted in two

ways, as maximizing the joint welfare, but it is also the commonly accepted mechanism in

contract theory for profit sharing between two economic agents with symmetric information.

For a fixed value of a parameter representing the relative bargaining power, in addition to

the optimal entry time, this procedure determines the optimal parameters of the linear

contract, the slope and the intercept. Thus, the actual level of sharing depends on the

bargaining power. This Pareto optimal contract design is not necessarily realistic, but it is

the ”first-best” benchmark case to which we compare the other two designs.

Next, we examine the contract design in which timing is incentive, i.e., the case in which

the contract is constructed so that both firms would find the same entry time to be optimal.

This case is used in a related paper Lambrecht (2004), as a reasonably realistic design for

modeling friendly mergers between firms.

Finally, we consider the case with asymmetric contract decisions, in which one firm
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decides on the initiation time, while the other firm decides on how to share the profits, while

satisfying the participation constraint of the first firm. This design might be realistic for

modeling hostile mergers, and joint ventures between asymmetric firms, the case we study

in our dataset.

We find that the slope and the intercept of the optimal linear contract are much more

sensitive to the model specifications than the optimal time of entry. We also find that the

utility loss relative to the Pareto optimal case in the second and third design is not very

large for most values of the bargaining power. In other words, as a practical matter it is of

lesser importance which contract design is used (as long as it is feasible) than which contract

parameter values are used.

- (ii) We model the risk attitudes in more general terms than is typical. That is, we

assume that the firms are potentially risk averse. This is in contrast to Lambrecht (2004),

who considers optimal timing of mergers between two risk-neutral firms. Unlike that paper,

we allow for risk-aversion of the firms and for non-zero cash payments, and we also consider

the effects of bargaining power. Allowing cash payments makes our results fundamentally

different from Lambrecht (2004). In particular, one of our main theoretical results says that,

with cash payments allowed, there is no difference between the three contract designs if the

firms are risk-neutral. However, if there is risk aversion, the three designs are no longer

equivalent, and the optimal contract parameters depend very much on what design is used.

They also may change significantly with the level of risk aversion.

- (iii) Following the real options approach in modeling the decision to form a co-development

alliance, methodologically, we use the theory of the optimal stopping of diffusion processes.

Classical references of its applications in economics include McDonald and Siegel (1986) and

the book Dixit and Pindyck (1994), where this theory was shown to be extremely useful for

problems involving real options, and in particular for the option of entering and/or exiting

a project. However, the standard results of the theory are not strong enough to enable us

to incorporate all the cases we study. Among the approaches offered in the literature we

found the recent very general mathematical treatment of Johnson and Zervos (2010) as the

most useful for our purpose. However, their assumptions are not quite satisfied for all the

models we consider. We extend some of the results of Johnson and Zervos (2010) in the

main methodological theorem given in Appendix.

In Section 2 we set up the model, in Section 3 we solve for the optimal linear contract

between the two firms, for the three different contract designs. We discuss comparative stat-

ics in Section 4, and in Section 5 we examine the agreement of those theoretical predictions

with empirical facts implied from a dataset of real world alliances. Section 6 concludes.

Appendix describes the underlying model in more mathematical detail and provides the

methodological theorems.
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2 The Model

There are two firms, S (for “small”) and L (for “large”). We think of firm S as the project

originator, while firm L is the firm with complementary resources that enters into a co-

development agreement with firm S. One example would be a biotech company (firm S)

entering into a joint venture with a pharmaceutical company (firm L).

After entering the co-development project at time τ , they share the future profit/loss

up to time τ + T . Here, T is the time horizon, and all the results hold for T = ∞, too.1

The profit/loss rate process Pt is the Brownian motion with the drift, i.e., it follows the

Stochastic Differential Equation (SDE)

dPt = bdt+ σdWt

where b, σ are constants and W is a standard Brownian motion process.

The interpretation of process Pt is that it represents the future profit/loss rate, in the

sense that the utility the firms get from it is accumulated over the time interval [τ, τ + T ]

of pursuing the joint venture.

The profit/loss is shared according to a (adapted) contract process Ct. More precisely,

the expected utility of firm L is given by

VL := E

[
1{τ<∞}

∫ τ+T

τ

e−rtUL(Pt − Ct)dt

]
and the expected utility of firm S is given by

VS := E

[
1{τ<∞}

∫ τ+T

τ

e−rtUS(Ct)dt

]
where r is a constant discount rate.

We remark that in much of the real options literature the firms are assumed to be risk-

neutral (having linear utility). It can be argued that a small privately held firm may be

more risk averse than a large firm, as its owners may be mostly invested in the firm, while

the shareholders of a large firm are likely to be well diversified, and thus closer to risk

neutral. This would create a need to allow for risk aversion of at least one firm. If both

firms are privately owned, then they might both be risk averse. In addition, in practice

there is evidence for difference in contracts when the contract decisions are asymmetric (see

Lambrecht 2004), which would be in contradiction with risk-neutrality, as we show later

below that there is no theoretical difference in various contract designs if the firms are risk-

neutral. As we will also see below, it is important whether the firms are risk averse or not

1We allow arbitrary values of T for the sake of generality, but, qualitatively, the results don’t change

much with T , as indicated in the section on comparative statics.
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– the optimal contract parameters do change significantly with risk aversion (even though

the optimal time of entry and the utility levels don’t).

For tractability, we will assume that the firms have exponential utility functions:2

Ui(x) = ki − lie
γix (2.1)

where (−γi) > 0 is the risk aversion, and li > 0. Parameters ki and li serve to normalize the

value of the overall expected utility and to model fixed costs or benefits from participating

in the venture. In particular, if there is a fixed cost fi, we can set li = e−γifi to be the utility

of the loss −fi due to the cost.3 Note, however, that with risk-neutral, linear utility, this

can be incorporated into the parameter ki.
4

As we will argue below, with exponential utility functions the contract Ct which optimizes

the weighted joint welfare VL + λVS is linear, and we denote it as

Ct = aPt + c . (2.2)

The interpretation of c and a is that they represent the future cash payments and the future

royalty payments.5

We will consider only linear contracts in this paper, even when we are not maximizing

the joint welfare.6

As we show in Appendix, and as is well known from the theory of optimal stopping and

real options, the optimal time of entry is the first time process Pt reaches over a certain

threshold x:

τ = τx = min{t : Pt ≥ x} .

2The benchmark process used in the real options theory is the geometric Brownian motion, and it is

usually interpreted as the firm’s stock price, or the firm’s value. We model here the profit/loss process,

and not the stock/firm value, and, moreover, the joint venture may have negative present value. In such

a framework it is customary to use the arithmetic Brownian motion for the state variable. However, it

should be pointed out that, mathematically, using the arithmetic Brownian motion and exponential utility

functions is equivalent to using the geometric Brownian motion and power utility functions.
3Less obviously, there may be cases that require setting lS higher. For example, Nicholson et al (2005)

find that inexperienced biotech companies tend to sign the first deals with large pharma companies on terms

that are less than optimal for them, but the deal itself acts as a signal to potential investors and the rest of

the community about the quality of the project and the company. The discount in the deal can be considered

as a payment to the pharma company for the evaluation that it performs.
4In the benchmark numerical case we will set li = 1, corresponding to zero fixed costs. We will set the

value of ki so as to make equal to zero the utility of zero profit. In particular, in the case in which the

profit/loss process is always equal to zero (Pt = 0, for all t), the overall expected utility would be zero – the

same as the value of never entering the venture.
5Here, the interpretation of a is that of a royalty percentage of profits, but only when the profit/loss rate

process P is positive. When it is negative, that is, when the loss is being experienced, the payments reverse

the direction, i.e., firm S pays a percentage of losses back to firm L during such periods.
6This is for tractability reasons – except for the joint welfare case, we do not know how to solve for the

optimal contracts if we allow contracts outside the linear class.
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Thus, we call a contract a triple (a, c, x), where we require 0 ≤ a ≤ 1. Denote the cor-

responding expected utility values by Vi(a, c, x). We now compute these values for a fixed

contract (a, c, x). Denote

β := 1 + 2b/σ2 , n := 1/2− β/2 +
√

(β/2− 1/2)2 + 2r/σ2 , θ(γi) = r − γ2
i σ

2/2− γib .

We assume throughout the paper that

r > b− σ2/2 .

This condition implies n > 1, and guarantees that the problem of optimizing over τ does

not explode when T = ∞. In case T = ∞ we also need the condition

θ(γi) > 0, i = L, S

in order to guarantee that the utility of owning the whole project is not negative infinity.

Next, denote

ki(x) = ki
1− e−xT

x

li(x) := li
1− e−xT

x

gS(a, c, x) = kS(r)− lS(θ(aγS))e
γSceaγSx

gL(a, c, x) = kL(r)− lL(θ([1− a]γL))e
−γLce[1−a]γLx

The first two functions are simply the integrals of the constants ki, li discounted over time

at rate x. As shown in Appendix, functions gs, gL correspond to the integrals, multiplied by

erτ , in the expected utilities Vs, VL evaluated in the case the entry time is such that Pτ = x

and the contract is of the form aP + c.

Then, we have

Proposition 2.1 For contract (a, c, x) with P0 ≤ x, the expected utilities of firms S and L

are given by

VS(a, c, x) = gS(a, c, x)e
−n(x−P0)

VL(a, c, x) := gL(a, c, x)e
−n(x−P0) .

Proof: From the standard results on Brownian hitting times, we get, for P0 ≤ x,

E
[
1{τ<∞}e

−rτ
]
= e−n(x−P0) . (2.3)

The result then follows from (7.23) and Lemma 7.1 in Appendix.
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As we can see, there is a tradeoff in expected utility between starting early (at low x),

which increases the “discount” term e−n(x−P0), and waiting for the potential venture profits

to become higher (high x), which increases the terms of the form gi(a, c, x).

Denote

KS(a) =
kS(r)n

lS(θ(aγS))[n− aγS]

KL(a) =
kL(r)n

lL(θ([1− a]γL))[n− (1− a)γL]
.

We have the following result for the optimal time of entry:

Proposition 2.2 Fix a and c. The values xi that maximize Vi(a, c, xi) are given by

xS = −c/a+
1

aγS
logKS(a) (2.4)

xL = c/(1− a) +
1

(1− a)γL
logKL(a) (2.5)

respectively, provided xi ≥ P0. If xi ≤ P0, then it is optimal to enter immediately.

Proof: These equations are obtained by taking the derivative with respect to x of the

values Vi(a, c, x) obtained in the previous proposition. A general optimal stopping theorem in

Appendix implies that these equations have unique solutions which are, indeed, the maxima.

3 Optimal contract and time of entry

The two firms have to decide on the time of entry, and on how to share the profits/losses.

We will consider three contract designs: (i) the risk-sharing case of maximizing weighted

joint welfare (the first-best, Pareto optimal case), henceforth called RSJW case (Risk-

Sharing/Joint Welfare case); (ii) finding the optimal timing-incentive contract for which

the optimal time of entry for the two firms is the same, henceforth called TI case (Timing-

Incentive case); (iii) finding the contract which maximizes one firm’s utility given that the

other firm decides on the time of entry; henceforth called ACD case (Asymmetric Contract

Decisions case).

RSJW case is the benchmark (likely unattainable in reality) to which we compare the

other two cases. TI case may be appropriate for modeling friendly mergers, for example,

while ACD case may be appropriate for modeling hostile mergers and joint ventures between

asymmetric firms.

In Section 4 below, we will consider the following question: given that firm S has to

be paid at least a given reservation value in expected utility, how does the optimal linear

contract vary across these three contract designs?
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3.1 Risk-Sharing/Maximizing weighted joint welfare: RSJW case

With Pt being the total profit/loss rate to the two firms S and L, and UL, US their utility

functions, for a given λ > 0, the profit-sharing, or the risk-sharing problem is to maximize,

over entry time τ and payment rate Ct from firm L to firm S, the value

V := VL + λVS = E

[
1{τ<∞}

∫ τ+T

τ

e−rt[UL(Pt − Ct) + λUS(Ct)]dt

]
. (3.6)

In other words, we maximize a weighted sum of the expected utilities of the two firms,

where the weight λ is interpreted as the bargaining power of firm S relative to firm L. This is

the standard approach for finding optimal risk-sharing contracts between two entities in the

case of symmetric information. 7 Note also that this risk-sharing formulation is equivalent

to assuming that one firm decides both on the timing and on the payments, while providing

the other firm with a given expected utility (“reservation wage”), determined by the level

of the “Lagrange multiplier” λ.

By maximizing inside the integral with respect to Ct, we see that the first order condition

for optimality of Ct is the classical Borch (1962) condition for risk sharing:

U ′
L(Pt − Ct) = λU ′

S(Ct) .

The optimal payment rate Ct from firm L to firm S is the solution to this equation. In

particular, when the utility functions are exponential as in (2.1), it is easy to verify that the

optimal contract is linear, Ct = aPt + c, with constants

a =
γL

γL + γS
, c = − 1

γL + γS
log(λ

lSγS
lLγL

) . (3.7)

Note that the royalty payment a depends only on the risk aversion parameters of the

two firms, while the cash payment c also depends on the level of bargaining power λ and

the relative value lS
lL

of “fixed benefits/costs” of the two firms.

As in the previous section, the optimal threshold x of Pt determining the entry time can

be found analytically. To wit, denote

Γ =
γSγL

γS + γL
.

We obtain, by direct maximization of VL(a, c, x) + λVS(a, c, x) over x, the following result:

Proposition 3.3 Given optimal a, c as in (3.7), the optimal time of entry is the first time

process P reaches over value x given by

eΓx = nkL(r)
(
(n− Γ)(lL(θ([1− a]γL))e

−γLc − λlS(θ(aγS))e
γSc)

)−1
.

We will use this expression for computing comparative statics in Section 4 below.

7See Bolton and Dewatripont (2005)

8



3.2 Timing-incentive contract: TI case

We call a contract (a, c, x) timing-incentive if the optimal entry thresholds for the two firms

are equal, xS = xL. We can use Proposition 2.2 and set xS = xL to gives us an equation for

the pairs (a, c) for which the contract is timing-incentive. We will vary values of a, for each

given value of a we will solve the equation for c, and we will then compare thus obtained

timing-incentive contracts to those from the other two cases.

This contracting framework would correspond in practice to the situation in which both

firms insist on entering the venture at the time optimal for them, and then they decide on

c and a consistent with that requirement and according to their relative bargaining power.

In contrast, we consider next the case when one firm decides on the time of entry, and the

other has no choice but to enter at that time, or to reject to enter the venture.

3.3 Asymmetric contract decisions: ACD case

We now assume that one firm decides on the starting time of the joint venture (the profit

entry threshold x), while the other firm decides on the form of the contract payoff (the values

of a and c). For example, in practice it may be the case that firm S decides when to ”put

itself on the market”, while firm L has rules in place governing its required compensation

for participating in joint ventures (given the values of b, σ and Pτ ). As in Lambrecht (2004),

this can be considered as a Stackelberg leader-follower game, in which the leader, firm L,

credibly commits to the required compensation, and the follower, firm S, decides then when

to start the joint venture. A possible theoretical rationale for this contract design is the

following: suppose firm S has information about the quality of the product which has to be

revealed to firm L when they start the joint venture. In return for its agreeing to reveal the

information, firm S is given the option to decide when to start the venture. 8

From another perspective, Lambrecht (2004) models hostile takeovers, where the acquir-

ing firm initiates the takeover, while the target firm credibly commits to the conditions of

the takeover, such as the compensation to the managers. In this interpretation, one would

have firm L as initiating the venture, and firm S as having committed to required compen-

sation, but this is just the change of notation. The main differences from Lambrecht (2004)

are that we allow for risk aversion of the firms, for the cash part of the compensation c, and

for varying bargaining power.

For concreteness, we assume that firm L is the one deciding on a, c and firm S decides on

8This is in the spirit of the ”revelation principle” in Contract Theory, which says that it is sufficient to

consider the contracts which induce truthfulness. However, the connection is only indirect, as we simply

assume that firm S is obliged to present true information, perhaps by a legal clause in the contract. We do

not know what the optimal truth-revealing contract is. Instead, we have here argued that the contract we

consider is likely not to be too far in spirit from the optimal contract in the case of asymmetric information.
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the time τ = τ(a, c) of initiating the joint venture. In accordance with the above discussion,

we suppose that both firms have full information about the value of Pτ and the parameters

b and σ at entry time τ .9 Thus, the functional form of the optimal (for firm S) entry

threshold xS = xS(a, c) is known to both firms, and we suppose that firm L will choose

(a, c) by maximizing its utility VL(a, c, xS(a, c)), under the participation constraint

VS(xS(a, c), a, c) ≥ R

where R is a given reservation utility of firm S, and represents the level of its bargaining

power.

Firm S maximizes, over stopping times τ ,

VS(τ) := E

[
1{τ<∞}

∫ τ+T

τ

e−rtUS(c+ aPt)dt

]
. (3.8)

We again assume exponential utility functions as in (2.1) and linear contracts. Recall the

notation KS(a) and that firm S will enter the venture optimally when the profit process P

reaches over the threshold xS determined by exS = e−c/aK
1

aγS
S (a). Together with Proposition

2.1, the following result gives us the value of VS(τ).

Proposition 3.4 We have

gS(a, c, xS) = gS(a) = kS(r)[1 +
n

aγS − n
] .

Moreover, if the firm S utility is fixed at a reservation value R, then we have

ec =

(
R

gS(a)

)a/n

e−aP0K
1/γS
S (a)

and the firm L maximizes R gL(a)
gS(a)

with

gL(a) = kL(r)− l
θ([1−a]γL)
L K

(1−a)γL
aγS

S (a)e−
c
a
γL

= kL(r)− l
θ([1−a]γL)
L K

− γL
γS

S (a)eγLP0

(
gS(a)

R

) γL
n

.

Proof: This follows by direct substitution of xS into the expression for gS, and by finding

ec from the constraint VS = R.

9Note that firm L does not need to know the model parameters before the entry time because it credibly

commits to required compensation for all possible values of those parameters.
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Remark 3.1 It can be shown that for the value of λ which satisfies

kSγSλ
γS

γL+γS = kLγLλ
− γL

γL+γS

the (optimal) contracts that give the same expected utility to firm S in all three cases are

the same, and then the expected utility of firm L is also the same for all three cases. For

example, if kSγS = kLγL, then for λ = 1 all three cases produce the same solutions, under

the constraint that firm S gets the same expected utility as in the joint welfare case. In other

words, under these conditions, the first-best solution of maximizing joint welfare is also the

solution to the other two cases of incentive timing and of asymmetric contract decisions,

and efficiency is reached with any of the three contract designs.

3.4 Risk-neutral firms

We consider now separately the risk-neutral case with

Ui(x) = ki + x , i = L, S.

We show that in this case the three contract designs, RSJW, TI and ACD all give the same

solution. The following result will help us analyze such a case.

Proposition 3.5 With given constants B ̸= 0 and A, consider the problem of maximizing

over τx = inf{t : Pt ≥ x}, the value

V (P0) = E

[
1{τx<∞}

∫ τx+T

τx

e−rt(A+BPt)dt

]
= (C +Dx)en(P0−x)

where

C = A
1− e−rT

r
+

Bb

r2
[
1− e−rT (rT + 1)

]
D = B

1− e−rT

r
.

The optimal threshold for this problem is given by

x =
1

n
− C

D
. (3.9)

If P0 < x, the corresponding value is given by

V (P0) =
D

n
en(P0+C/D)−1 .

In case B = 0, A > 0, τ ≡ 0 is optimal. In case B = 0, A < 0, τ ≡ ∞ is optimal.
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Proof: This can be shown as a special case of the main theorem in Appendix. More

directly, from Lemma 7.1 in Appendix we can compute that

V (P0) = E
[
1{τ<∞}e

−rτ (C +DPτ )
]

. (3.10)

The result then follows by replacing Pτ with x, using E
[
1{τx<∞}e

−rτx
]
= en(P0−x), and

maximizing over x.

In this section we interpret RSJW problem as the problem of firm L maximizing its

utility under the participation constraint that firm S receives reservation utility R. The

following proposition shows that there is essentially no difference between the three cases

with risk-neutral firms.

Theorem 3.1 Let (a, c, x) be a TI contract that gives firm S expected utility R. Then the

same contract is optimal for RSJW case and ACD case, under the constraint that firm S

utility is at least R.

Thus, if the firms have no restrictions on the size of the cash payments, the Pareto

optimal outcome can be attained with any of the three designs. This stands in contrast with

the results in Lambrecht’s (2004) analysis of mergers, in which the firms can only share the

total pie (that is, can choose a in our framework), but are not allowed to use side payments

(c in our framework): in that paper the different contract designs lead to different outcomes.

The intuition on why the three designs are equivalent in our model in the risk-neutral

case is as follows. Because of risk neutrality, in RSJW case it does not really matter what

values of a and c constitute the contract, as long as the reservation value of firm S is attained.

(In fact, as seen in the proof below, the optimal threshold does not depend on (a, c).) Thus,

a and c may be chosen so that the contract is also timing-incentive, which makes RSJW and

TI cases equivalent. Moreover, since the optimal RSJW contract provides the best utility

to firm L while guaranteeing the reservation value to firm S, firm L will choose this same

contract also in ACD case. This argument does not work in the presence of risk aversion

– in that case the optimal RSJW threshold depends on (a, c), and (a, c) cannot be made

timing-incentive. It also does not work if c is forced to be zero, as in Lambrecht (2004),

because then a has to be chosen so as to satisfy the reservation value, but then it cannot be

made timing-incentive.

In Figures 1-3 we assume that the two firms have the same risk aversion, and we present

the values of x, c and a across a range of values of the common risk aversion. We see that

a and c for TI and ACD designs converge to the same value as those risk aversions tend to

zero, and so do the values of x for all three designs. The values of a and c for RSJW case

happen to be different. This is because, as already mentioned above, in the risk neutral
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case any value of a can be optimal, by finding c such that (a, c) satisfies the participation

constraint of firm S, and here the value of a happens to be set at 0.5. We also see that

the values of a, c and x for the three designs also become close to each other for very large

values of risk aversion.

A rigorous proof of the theorem is given next.

Proof: We first consider RSJW case. Denote by CS, DS, CL, DL the values od C,D

from Proposition 3.5 corresponding to the optimization problem of firm S and of firm L,

respectively. The participation constraint implies that we need to have (CS+DSx)e
n(P0−x) =

R, which can be written as

c = −kS +Re−n(P0−x) r

1− e−rT
− ax− ab

r
× 1− e−rT (rT + 1)

1− e−rT
. (3.11)

Plugging this back into VL = (CL+DLx)e
n(P0−x), we get that VL does not depend on a, and

that optimal x is given by

x =
1

n
− kL − kS − b

r
× 1− e−rT (rT + 1)

1− e−rT
. (3.12)

Note also that we can set c to any value we want, and find a from the participation constraint

(3.11).

For the timing-incentive case, we need to have xS = xL, which means, from (3.9) the

definitions of C and D, and from

AL = kL − c , BL = (1− a) , AS = kS + c , BS = a

that we need to have (kL − c)/(1− a) = (kS + c)/a, which gives us

c = akL − (1− a)kS . (3.13)

Plugging back into the optimal threshold, we can check that we get the same value as in

(3.12). Then, the value of a can be decided upon by giving a specific level of utility to firm

S.

For the case of asymmetric contract decisions, we first note that the entry threshold is

given by

xS =
1

n
− kS + c

a
− b

r
× 1− e−rT (rT + 1)

1− e−rT
(3.14)

and the firm L maximizes over a and c, under the constraint VS ≥ R, using (3.10),

VL = en(P0−xS)

{
(kL − c)

1− e−rT

r
+

(1− a)b

r2
[
1− e−rT (rT + 1)

]
+ xS(1− a)

1− e−rT

r

}
.

It is readily seen that the timing-incentive choice of c as in (3.13) makes the optimal

threshold for firm S in (3.14) the same as the one for RSJW case in (3.12), and, as mentioned
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above, this is also the timing-incentive threshold. Since in RSJW case we are free to choose

c or a, we can set c to this value. Since then (c, x) are the same for RSJW case and TI case,

the value of a in those two cases also has to be the same in order for the utility of S to be

the same. And since that is the best firm L can do while guaranteeing utility R to firm S,

it is optimal for it to choose those same values also in ACD case.

3.5 Optimal exit time

We allow now for the possibility that the project is stopped at an optimal time, rather than

at a fixed horizon. We assume again exponential utility functions, or the risk-neutral case.

We only consider the RSJW case, and the ACD case in which firm S decides on both

entry and exit. 10

For the optimal exit problem, the optimal time is the first time τ̄ at which process

P crosses below a specific optimal level x∗, if x∗ < P0, otherwise it is optimal to stop

immediately. We will need the fact that for a given x < P0, the standard results from

diffusion theory tell us that

E[e−rτ̄ ] = e−ñ(x−P0)

where ñ is defined analogously to n, but with the minus sign in front of the square root.

Thus, ñ < 0.

Consider first the ACD case in which firm S decides on both the entry and the exit

time. The optimal exit time is determined by x̃S given by the same expression as xS in (2.4)

except with n replaced by ñ. We then have the following result:

Proposition 3.6 The optimal entry time for firm S is obtained by solving the problem

max
x≥x̃S

{[kS(r)− lS(θ(aγS))e
γS(c+ax) + vS(x)]e

−n(x−P0)} (3.15)

where vS(x) is defined by

vS(x) = −kS(r)(1 +
ñ

aγS − ñ
)e−ñ(x̃S−x) .

Next, denote by xS(a, c) the optimal entry point x obtained by solving the above problem for

a given pair (a, c). Then, the optimization problem of firm L is to maximize over (a, c) its

10The TI case here would consist in requiring that the two firms agree both on the entry and on the exit

time, which would specify a and c uniquely no matter what the bargaining power, or there would be no a

and c for which that is possible. One could also look at the case where both firms have the option to stop

the project. This would make it a complex stochastic game of optimal stopping (in addition to finding the

optimal entry time), and we do not consider it here.
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expected utility given by

e−n(xS(a,c)−P0) ×
[
kL(r)− lL(θ((1− a)γL))e

γL((1−a)xS(a,c)−c) (3.16)

−e−ñ(x̃S−xS(a,c))
(
kL(r)− lL(θ((1− a)γL))e

γL((1−a)x̃S−c)
) ]

over such (a, c) for which xS(a, c) > x̃S.

Proof: See Section 7.4 in Appendix.

We will use this proposition in the comparative statics section for computing numerically

the optimal contract. As for RSJW problem with optimal exit and entry, the optimal a, c, x, x̃

can be computed numerically by maximizing, over a, c, x, x̃ the expected utility of firm L

given by the expression in (3.16) (with xS replaced by x and x̃S replaced by x̃), under the

constraint that the expected utility of firm S, given by an expression analogous to (3.16), is

no less than the given reservation value.

In the risk-neutral case, the following analogue of Theorem 3.1 holds:

Theorem 3.2 There is a contract (a, c, x, x̃) which is optimal both for RSJW case and ACD

case, under the constraint that firm S utility is the same in the two cases. That is, there is

a pair (a, c) such that in ACD case firm S will choose the same entry time x and the same

exit time x̃ that are optimal for RSJW case.

Proof: We only give a sketch of the proof. It is similar to the proof of Theorem 3.1 –

choosing (a, c) so that c = akL − (1 − a)kS, one can check by direct computation that not

only the first order conditions become the same for the exit time x̃RSJW in RSJW case and

the exit time x̃S in ACD case, but that also the first order conditions are the same for the

entry time xRSJW in RSJW case and the entry time xS in ACD case.

4 Comparative Statics

Having developed the above framework, we can now compute the optimal entry points,

the optimal contract and the expected utility for various parameters of the model, that we

compute here numerically across different values of bargaining power of firm S.

4.1 The benchmark case

Our benchmark case has the following parameters, in annual terms:

P0 = 0, γS = γL = −1, r = 0.1, b = 0.00875, σ = 0.35, T = 5, 1 = ki = li .
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In particular, the two firms have the same risk aversions in the computations in this case

(but not zero risk aversion, the case already studied above).

The choice of parameters r, b, σ and T is in a rough agreement with real world examples.

In particular, the annual discount rate of 10% is on a high side, but not that rare historically.

The annual volatility of 35% is in the ballpark of the observed values for stocks of the firms

whose risk is somewhat higher than average. Finally, the value of b is somewhat arbitrary,

as its interpretation depends on the monetary units. 11

The choice of P0 = 0 is a normalization. The choice of li = 1 corresponds to zero

fixed costs and the values of ki are chosen so that the utility of zero profit is zero. (In

particular, this makes the overall expected utility of a zero profit/loss process equal to zero,

the same as if never entering the venture.) The choice of the risk aversion parameters γi

is quite arbitrary, but it turns out that the qualitative behavior of the optimal parameters

as functions of bargaining power are not sensitive to the values of risk aversion, as reported

below. On the other hand, we have already seen in Figures 1-3 how risk aversion affects the

level of optimal parameters.

The figures here are obtained by varying across the x-axis the certainty equivalent of

the values VS of the guaranteed expected utility to firm S, requiring in all three cases that

the expected utility is at least as much as the chosen value of VS. More precisely, we have

on the x-axis the values of u−1
S (VS) where uS is the (exponential) utility function of firm S.

Thus, we can interpret the figures as showing the y−axis values across a range of values of

the bargaining power of firm S.

Figure 4 shows the optimal threshold levels for the three contract designs we study. While

the difference is not large, we see that for low values of the bargaining power, the entry occurs

earlier in RSJW case than in the other two cases, while for high values entry occurs sooner

in ACD case (because firm S dictates the terms of entry). In ACD case, which, as we

recall, can be interpreted as the case of asymmetric information, firm S with moderately

low bargaining power tends to wait relatively longer to enter the alliance. This leads us to

predict that firms with moderately low experience (that should roughly correspond to firms

with moderately low bargaining power) prefer to enter joint ventures later, a prediction we

explore below in the empirical section.

Figure 5 shows the cash payments c. For low and moderate bargaining power c is close

to zero for TI and ACD cases. In fact, for TI case it stays close to zero everywhere. It

is increasing for the risk-sharing RSJW case, hitting zero for equal bargaining power. It

is also increasing for ACD case, but much less steeply. Overall, we see that cash is useful

for sharing risk if joint welfare is the consideration, but not needed much when timing is

11Nevertheless, in a model in which Pt could be interpreted as the exponential rate or return (which is

not the case in our model), noting that by Ito’s rule the drift of exp(Pt) is equal to b+ σ2/2 = 7%, the rate

or return of 7% is not an unreasonable number.
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incentive or when the firm with low bargaining power decides on time of entry. The negative

values of cash for low bargaining power of firm S for RSJW case mean that firm S pays.

For example, it could be required to invest a certain amount of cash in the co-development,

for instance by paying salaries of additional employees. 12

Figure 6 shows the optimal fraction a for the three cases. It is always equal to 50% in

RSJW case (because the firms have the same risk aversion). It is approximately linearly

increasing in TI case, and also in ACD case for low levels of S bargaining power, while for

high values thereof ACD a still increases, but slower than linearly (because a part of the

firm S reward comes from its decision to enter early, and a part comes from cash) .

4.2 Varying other parameters

An interesting phenomenon occurs when the participation constraint for ACD case is not

necessarily binding. For example, that happens with the parameters as in our benchmark

case, except we increase the value of risk aversions. An example with γS = γL = −4 is

depicted in Figure 7. Now, in ACD case contracts with ”sticky” royalties happen. By sticky

royalties we mean those royalties that vary in a narrow range. More precisely, for not too

high bargaining power of firm S the value of a in ACD case stays flat – the royalties offered by

firm L will be almost the same for partner firms with different degrees of bargaining power,

as long as the latter is not very high. In fact, for low and moderate values of bargaining

power of firm S, firm L is willing to pay more than the reservation wage, by pushing up

the value of a. Thus, the participation constraint is not actually binding in this range, and

the optimum clusters around similar values of a. With high bargaining power, however, the

reservation wage binds, and a has to be increased to provide higher utility to firm S. 13

For completeness, we also report on the comparative statics we obtained when varying

parameters b, T , σ and γi. We save on space and provide no figures here, the reason being

that the effects of changing the parameters are either non-surprising or not very significant,

especially qualitatively.

Varying b. We explore how project quality measured by b impacts the entry time. In

the risk-neutral case, it can be seen, or computed from (3.12) that the time of entry may be

either earlier or sooner with higher b. For much higher b it will be sooner, but for smaller

12Presumably, in practice firm S typically does not have higher bargaining power than firm L, which

means that it would be required to make cash payments in RSJW case, but this is not directly observed in

the data. This may be due either because a limited liability constraint is adopted, that is, the payment to

firm S is required to be non-negative, or because the cash payments are indirect, or simply because RSJW

model is not a good depiction of reality.
13We also have observed this same phenomenon in our numerical exercises in other cases when the par-

ticipation constraint is not binding, for example for low values of bargaining power when the horizon T is

long.
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values of b it can be increasing in b because of the decrease of the value of n in b. That is,

because of the decrease in the effect of discounting by rate r when b is increased, it may be

better to enter later. This phenomenon, though, is not new – it occurs also in the classical

real options theory with only one firm making the entry decision.

Varying σ. As could be expected, with low σ the firms enter sooner.

Varying time horizon T . The qualitative behavior of the optimal values does not

change much when we vary T . The only changes we see in our numerical experiments are

that the difference of the values across the three contract designs is more pronounced with

larger T , and the optimal entry level x as a function of bargaining power may change its

convexity/concavity properties in TI and ACD cases.

4.3 The case with optimal exiting

As in Section 3.5, we now consider RSJW case in which the exit time is also chosen optimally,

and ACD case in which firm S decides on both entry and exit. We consider these problems

with the same parameters as in our benchmark case, and under the constraint that the

expected utility of firm S is no less than in the benchmark case. We compare it to the

benchmark case in which the fixed venture interval is T = 5 (with corresponding figures

discussed above), and also in which T = ∞ (figures not shown).

Figures 8 and 9 show the optimal cash c and the optimal profit percentage a. ACD cash

c is now close to zero also for high values of firm S bargaining power, and RSJW cash c is

still increasing, but lower. ACD profit percentage a is also lower. In other words, firm S gets

paid less both in cash and in royalties, because of the additional option of exiting earlier.

We also report (without figures) that the firms enter the project quite a bit earlier, again

because of the possibility of choosing the exit time optimally. Moreover, while Savva and

Scholtes (2007) find that the efficiency of ACD case is improved when exit time is optional,

in agreement with that we find that the relative difference between the expected RSJW

utility and ACD utility is smaller than in the case with fixed exit time T = ∞, but it is

larger than in the case with fixed exit time T = 5.

5 Empirical results

In this section we check some qualitative features of our model against the real world data.

We use the data on alliances from Recombinant Capital (www.recap.com). We choose the

alliances classified as co-developments where the R&D originator is a biotech firm and the

other partner is a pharmaceutical firm. Among the three designs we study, we think that

ACD case is the most appropriate for such ventures, as the small firm decides when to start

looking for a partner, while the large firm may have more say in the way the contract is
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specified. If a deal is very transparent, with most information available to both firms, then

RSJW case might also be appropriate.

We allow that the alliance, in addition to co-development, includes other activities such

as licensing, co-marketing, etc. Our database spans the years 1984-2003. In the cases where

the same molecule is being developed for multiple therapeutic applications (e.g. cancer,

infectious diseases, cardiovascular diseases, etc.), each application is treated as a separate

project. Let us note that we use the data not for exact empirical estimations, but, rather,

to show that our model addresses realistic issues and gives consistent insights into alliance

decisions.

The nature of our sample is the following: originally there were 325 co-development

alliances that satisfied the above conditions. Out of those alliances 256 have reported either

the size of the deal, the royalty or both, and 9 more alliances reported only royalty; see

Table 1. The remaining alliances lacked that information and therefore were excluded from

the sample. Table 2 shows the averages of the continuous variables used in this section, and

the information at the stage of entering into the alliance.

Our theoretical results are expressed as a function of the bargaining power of the firm S

(the biotech firm). To operationalize this concept, we use a proxy variable which we define

as the number of prior alliances. The rationale behind this is that the more experienced the

biotech firm is, the better it is able to negotiate and has higher bargaining power. On the

other hand, for the inexperienced firms (such as the new entrants) we would expect that

their negotiation leverage is lower, and that they have lower bargaining power. The average

number of alliances in our sample is 19.18, with standard deviation of 18.26. We create a

categorical variable “experience” in the following way: the firms with no prior experience

are coded as 0, the firms with little experience (less than or equal to 5 alliances) are coded

as 1, the firms with medium experience (more than 5 and less than or equal to 33 alliances)

are coded as 2, and the firms with abundant experience (more than 33 alliances) are coded

as 3. The frequency table of the alliances for these four groups is given in Table 3.

We first consider the time of entry for the firms. We find that the time of entry indeed

differs with the experience of the project originator. Table 4 shows a frequency table of

the alliances depending on the stage at which the alliance was entered. Data shows that

firms with no prior experience (i.e., low bargaining power), tend to wait longer to enter the

alliance. Due to the small number of alliances per cell for the stage BLA/NDA filed, we

combined the first and the last two categories of experience and then ran the Pearson Chi-

square test. The test came out significant, indicating that the firms with less experience tend

to wait longer, while the firms with more experience tend to enter alliances sooner. In our

model this was the case in the context of Figure 4 for moderately low values of bargaining

power for ACD case, that is, with the contract parameters a and c decided by firm L and

the entry time decided by firm S.
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Next, we examine whether our theoretical findings regarding the size of the cash com-

pensation is supported by the data. In our database we have information about the total

size of the deal (and the royalties, which are not included in the total size). We subtract

from it the amount of money used for equity payments to get to the cash amount paid in

the alliance.14 To make sure that we do not overinflate the cash payments in the cases

when we have several applications of one chemical compound, we count the payments only

once (i.e., we count the cash per compound, not per application). Using ANOVA with

cash as the dependent variable and experience as the categorical independent variable, we

find that cash is significantly higher for firms that are classified as very experienced, with

F (3, 200) = 6.76, p = 0.0002, the values provided in Table 5. This effect is shown in Figure

10 and is approximately in line with the theoretical findings from Figure 5 for ACD case.

Obviously, it is only a rough agreement, as the dependence in Figure 10 is actually somewhat

decreasing for low bargaining power.

As for the royalty percentage, an examination of our database shows that among all the

co-development alliances between a biotech company in the role of a R&D originator and

a partnering pharma company, the royalties that range between 40% and 60% appear in

51.5% of the contracts. In particular, the royalties of exactly 50% appear in 42.3% of the

contracts. Recall that in our model royalties in this range occur for all three contract designs

in the case of similar risk aversion for the firms and similar bargaining power (Figure 6), as

well as in ACD case when the risk aversion is high (Figure 7).

Finally, let us mention another finding, however of lesser statistical significance. We

find some confirmation in the data that the inexperienced firms are paid smaller royalties:

34.2% of the inexperienced firms receive royalties of less than 20%, while that is true for

only 17.4% of the experienced firms. That is, larger bargaining power tends to imply larger

royalties, consistent with the theoretical implications (Figures 6 and 7). However, when we

run a regression with royalty as the dependent variable and the number of prior alliances as

the predictor, we do not get a significant relationship. This may be because most royalties

are around 50% and therefore there is not enough variation for a significant relationship.

6 Conclusions

In this paper we use the real options theory to model the decision of two (potentially risk

averse) firms, called S and L, to enter a co-development alliance, where firm S is the project

originator. Methodologically, we use the theory of optimal stopping of diffusion processes.

We also find the optimal sharing of profits between the two firms, among linear sharing rules.

14In our theoretical model, the cash is paid at a constant rate c, rather than as a lump-sum payment.

However, this makes no difference for our analysis, as the amount of the lump-sum payment is simply the

rate times the time horizon T .
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We consider the case of risk-sharing between the two firms, the case of agreeing on the time

to enter, and the case of asymmetric contract decisions. In the latter case we assume that

firm S decides on the initiation time, while firm L decides on how to share the profits.

We find that allowing side cash payments makes all three contract designs equivalent if

the firms are risk-neutral. However, for risk averse firms, the three contract designs may

differ significantly in the slope and the intercept of the contract, but not much in the time

of entry nor in the level of expected utility. We also find that while cash is useful for sharing

risk if joint welfare is the consideration, it does not play an important role when timing

is incentive or when the firm with low bargaining power decides on time of entry. The

participation constraint of firm S is not always binding in ACD case. When it is not, the

optimal percentage of profits becomes ”sticky”, i.e., firm L offers the same profit percentage

to firms of various bargaining powers, as long as the latter is not very high, and for reasonable

parameter values this percentage is in the mid-range. The optimality of royalties in the 40-

60% range, the common royalty range in our data, also occurs theoretically in the case in

which the firms have similar risk aversions and bargaining powers.

We also examine the sensitivity of the optimal contracts to the project quality, the project

uncertainty, the length of time horizon and the difference in risk aversions. We find that in

most cases the parameters of the optimal contract do not change their qualitative behavior

as functions of bargaining power when those values vary. However, their quantitative levels

may change significantly and their values may differ quite a bit across different contract

designs.

In general, while our model is quite stylized and has few parameters, the qualitative

conclusions we obtain are in a rough agreement with empirical data. Nevertheless, it would

be of significant interest to extend our analysis to the following cases:

- Moral hazard risk coming from uncertainty about firm L’s commitment to the project.

One way to model this is to replace the project quality parameter b with b+ e, where effort

e is controlled by firm L, but unobserved by firm S. This would mean solving a problem of

optimal contracting with moral hazard and optional entry time, something which has not

been done in general.15 Similarly, we could assume that firm S controls the size of the drift

b.

- Including jumps into the profit/loss process, representing the sudden changes, for ex-

ample due to the arrival of testing results for a new drug.

We leave the analysis of these ambitious modeling frameworks for future research.

15However, see Cvitanić, Wan and Zhang (2008) for moral hazard problems with optional exit time.
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7 Appendix

7.1 Optimal entry time in the general case

Consider the process P following a Stochastic Differential Equation (SDE)

dPt = bdt+ σdWt

where b, σ are constants and W is a Brownian motion process. In some calculations it will

be more elegant to present results in terms of the geometric Brownian motion exp(P ). Since

in the following lemma we use only the strong Markov property, the result is valid for both

X = P and X = exp(P ).

Lemma 7.1 We have

Ex

[∫ τ+T

τ

e−rsh(Xs)ds

]
= Ex

[
e−rτEXτ

∫ T

0

e−ruh(Xu)du

]
.

Proof: Directly from

Ex

[∫ τ+T

τ

e−rsh(Xs)ds

]
= Ex

[
e−rτEFτ

∫ T

0

e−ruh(Xτ+u)du

]
= Ex

[
e−rτEXτ

∫ T

0

e−ruh(Xu)du

]
.

Since the second expectation in the last line is a function F (Xτ ), it is sufficient for us to

consider the following general stopping time problem:

Ṽ (p) = sup
τ

Ex[1{τ<∞}e
−rτf(Pτ )] . (7.17)

Assumptions needed below are such that the results are more naturally presented in terms

of X = exp(P ) (the singularity of the utility function is then positioned around zero instead

of around −∞). Because of this, we look at the process

dXt = Xt[b̃dt+ σdWt]

where b̃ = b+ σ2/2. We assume r > 0 and r > b̃, and we denote x = X(0) = eP (0). We then

rewrite our problem as

V (x) = sup
τ

Ex[1{τ<∞}e
−rτg(Xτ )] . (7.18)

Denote

Ly(x) = 1

2
σ2x2y′′(x) + b̃y′(x)− ry(x)

and recall also the notation β = 1 + 2b/σ2, n = 1/2− β/2 +
√
(β/2− 1/2)2 + 2r/σ2.
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Assumption 7.1

- (i) g ∈ C2((0,∞))

- (ii) There exists a unique x∗ > 0 such that q(x∗) = 0 where

q(x) := ng(x)− xg′(x) .

Moreover, we have q(0) < 0.

- (iii) Lg(x) ≤ 0 , x > x∗ .

- (iv) [xg′(x)]2 ≤ C(1 + xj) , for some j ≥ 1 , x > x∗ .

- (v) Ex[1{τ<∞}e
−rτ |g(Xτ )|] < ∞ for all stopping times τ and all x > 0.

- (vi) limT→∞Ex[e
−rT |g(XT )|] = 0.

Define

A :=
g(x∗)

(x∗)n

and the function w by

w(x) = Axn , x < x∗

w(x) = g(x) , x ≥ x∗ .

It is easily verified that w ∈ C1((0,∞)) ∩ C2((0,∞) \ {x∗}).

Theorem 7.3 Under Assumption (7.1), we have

w(x) = V (x)

and the optimal stopping time is

τ̂ = inf{t ≥ 0 | Xt ≥ x∗} .

Proof: Note that

Lw(x) ≤ 0 , x > 0 .

We also want to show that

w(x) ≥ g(x) , x < x∗ .

By definition of w and A this is equivalent to

g(x∗)

(x∗)n
≥ g(x)

(x)n
, x ≤ x∗ . (7.19)

We have
d

dx

(
g(x)

(x)n

)
= − q(x)

(x)2n
.

However, since x∗ is the unique solution of q(x) = 0 and q(0) < 0, we see that the above

derivative is positive for x < x∗, which proves (7.19).
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Next, define

τk = inf{t ≥ 0 | Xt ≤ 1/k} .

Fix T > 0. By Ito’s rule,

e−r(τ∧τk∧T )w(Xτ∧τk∧T ) = w(x) +

∫ τ∧τk∧T

0

e−rsLw(Xs)ds+Mk,T
τ (7.20)

where

Mk,T
t =

∫ t∧τk∧T

0

e−rsσXsw
′(Xs)dWs .

We have

E

[∫ T

0

[e−rsσXsw
′(Xs)]

21{s≤τk}ds

]
≤ sup

x∈[1/k,x∗]

[σxw′(x)]2T + E

[∫ T

0

[σXsw
′(Xs)]

21{Xs>x∗}ds

]
≤ sup

x∈[1/k,x∗]

[σxw′(x)]2T + C

(
T +

∫ T

0

E[Xj
t ]dt

)
< ∞ .

This means that Mk,T is a martingale, and that E[Mk,T
τ ] = 0. This implies, taking expec-

tations in (7.20), using Lw ≤ 0, w ≥ g, that

E
[
e−rτg(Xτ )1{τ≤τk∧T}

]
≤ w(x)− w(1/k)E

[
e−rτk1{τk≤T≤τ}

]
− E

[
e−rTw(XT )1{T<τk<τ}

]
.

(7.21)

Since w(0) = 0, the middle term on the right-hand side converges to zero as k → ∞.

Moreover, since 0 ≤ w(x) ≤ C(1 + |g(x)|), and because of Assumption 7.1 (vi), the last

term converges to zero when T → ∞. Finally, by Assumption 7.1 (v), we can use the

dominated convergence theorem to conclude that the term on the left-hand side converges

to E
[
e−rτg(Xτ )1{τ<∞}

]
. After taking expected value and the limits, we get V (x) ≤ w(x).

If we now repeat the above argument with τ = τ̂ , we will see that everything holds as

equality, hence V (x) = w(x) and τ̂ is optimal.

7.2 Verifying Assumption 7.1

Our method above applies to general utility functions. Let us now check that it works for

exponential utility functions applied to P , or, equivalently, to power utility functions applied

to X = eP . We consider the function

g(x) = c0 +
I∑

i=1

cix
γi/γi
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for x > 0, with ci ≥ 0 and at least one ci > 0 for i ≥ 1. (In the body of the paper we have

I = 1 or I = 2, depending on whether we are maximizing a single firm’s objective or joint

welfare.) For those i ≥ 1 with ci > 0 we also assume that all γi are of the same sign, that

we have γic0 < 0, and that 0 < θ(γi) := r − γ2
i σ

2/2− γib.

Obviously, g′ > 0, g′′ < 0. We can compute

q′ = (ng − xg′)′ = (n− 1)g′ − xg′′ > 0 .

Also, we have q(0) < 0, q(∞) > 0. Thus, there exists a unique x∗ such that q(x∗) = 0. From

this, and from

q(x) = nc0 +
∑
i

cix
γi(n/γi − 1)

we can compute

nc0 = −
∑
i

ci(x
∗)γi(n/γi − 1) .

We also have

L(x) := Lg(x) = −
∑
i

cix
γiθ(γi)/γi − rc0 .

Note that

L′(x) = −
∑
i

cix
γi−1θ(γi) < 0 .

So, in order to prove L(x) ≤ 0 for x ≥ x∗, it is sufficient to show L(x∗) ≤ 0. From the above

expressions for c0 and L(x) we get

L(x∗) =
∑
i

ci(x
∗)γi [r(

1

γi
− 1

n
)− θ(γi)/γi]

=
∑
i

ci(x
∗)γi [− r

n
+

1

2
(γi − 1)σ2 + b̃] .

Using the notation β = 2b̃/σ2 and that γi < 1, it is then sufficient to show

nβ − 2r/σ2 ≤ 0 .

Denote βr = 2r/σ2. Then, the above is equivalent to

β
√

(β/2− 1/2)2 + βr < βr + β2/2− β/2

or, after squaring

β2(β2/4− β/2 + 1/4 + βr) < β2
r + β4/4 + β2/4 + β2βr − ββr − β3/2 .
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After cancelations, this boils down to

0 < β2
r − βrβ = βr(βr − β)

which is true, and we are done with proving (iii).

Assumption (iv) is straightforward. Next, we can easily see that

e−rtXγ
t = Ce−(r−b̃)tMt

where Mt = exp{σ2t/2 + σWt} is a positive martingale with expectation equal to one.

Then, (vi) follows immediately since r > b̃. Similarly, using Fatou’s lemma and looking at

a sequence τ ∧N and letting N → ∞, we also get (v).

7.3 Optimal entry time in the special case

We now turn to the particular case of the entry problem that interests us in this paper, that

is, the problem of maximizing over stopping times τ the expression

Ex

[
1{τ<∞}

∫ τ+T

τ

e−rth(Xt)dt

]
(7.22)

with

h(x) =
I∑

i=1

[ki + lix
γi/γi]

where γi < 0, li ≥ 0, at least one of li is strictly positive, and
∑I

j=1 kj
1−e−rT

r
> 0.

Denote

Rh(x) := Ex

∫ T

0

e−rsh(Xs)ds .

We showed in Lemma 7.1 that the problem of maximizing (7.22) is equivalent to the maxi-

mization problem

w(x) := sup
τ

Ex

[
1{τ<∞}e

−rτRh(Xτ )
]

. (7.23)

We can compute

Rh(x) =
∑
i

[ki(r) + li(θ(γi))
xγi

γi
]

where we recall that

ki(r) = ki
1− e−rT

r
, li(θ(γi)) = li

1− e−θ(γi)T

θ(γi)
.

According to Theorem 7.3 and subsection 7.2, the optimal time of entry is the first time

process X hits the point x̂ that is determined from the equation

nRh(x̂) = x̂R′
h(x̂) (7.24)
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or
I∑

i=1

ki(r) =
I∑

i=1

li(θ(γi))

(
1

n
− 1

γi

)
x̂γi . (7.25)

Remark 7.2 Let us emphasize that the method here allows for some flexibility in the choice

of the state process vs. the choice of the utility functions. Suppose that our profit/loss rate

process is a 1 - 1 function of the state process X, Pt = F (Xt), and Xt = F−1(Pt). Hence,

applying an utility function u(·) on Pt is equivalent to applying the utility function u(F (·))
(assuming it is concave) on Xt. For example, as we have already mentioned above, mathe-

matically the problem with the geometric Brownian motion and the power utility function is

equivalent to the problem with the arithmetic Brownian motion and the exponential utility

function. In this way we keep the convenience of both worlds; the applications based on

the ordinary Brownian motion and the mathematical solutions of the problem based on the

geometric Brownian motion.

7.4 Proof of Proposition 3.6

Consider the general entry/exit problem to maximize over the entry time τ0 and duration

time τ̄ ≥ 0 the quantity

Ex

[
1{τ0<∞}

∫ τ0+τ̄

τ0

e−rth(Xt)dt

]
= Ex

[
1{τ0<∞}

(∫ ∞

τ0

e−rth(Xt)dt−
∫ ∞

τ0+τ̄

e−rth(Xt)dt1{τ̄<∞}

)]
.

Denote

Rh(x) = Ex

∫ ∞

0

e−rsh(Xs)ds .

Then, similarly as in Lemma 7.1, the above is equivalent to the maximization problem

wA := sup
τ0,τ̄

Ex

[
1{τ0<∞}e

−rτ0Rh(Xτ0)− 1{τ0<∞}e
−rτ0EXτ0

[e−rτ̄Rh(Xτ̄ )1{τ̄<∞}]
]

.

Introduce the “exit value function”

vE(x) := sup
τ̄

Ex[−e−rτ̄Rh(Xτ̄ )1{τ̄<∞}] .

The mixed entry/exit problem can then be written as

wA = sup
τ0

Ex

[
e−rτ0 [Rh(Xτ0) + vA(Xτ0)]1{τ0<∞}

]
.

Consider the ACD case of firm S deciding on both the entry and the exit. The optimal

exit time is x̃S given by the same expression as in (2.4) except with n replaced by ñ, where
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ñ differs from n in the sign of the square-root term. As in Proposition 3.4, we then get, if

x̃S < P0,

vE(P0) = −kS(r)(1 +
ñ

aγS − ñ
)e−ñ(x̃S−P0) .

If x̃S ≥ P0 then it is optimal to stop immediately.

The results of Proposition 3.6 now follow from the above computations and the expres-

sions for function h in RSJW and ACD problems.
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Figure 1: Optimal initial profit level as a function of risk aversion.
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Figure 2: Optimal cash payments as a function of risk aversion.
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Figure 3: Optimal percentage payments as a function of risk aversion.
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Figure 4: Optimal initial profit levels for the three designs.
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Figure 5: Optimal cash payments.
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Figure 6: Optimal profit percentages.
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Figure 7: Optimal profit percentages with high risk aversion.
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Figure 8: Optimal cash payments with optimal exiting.
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Figure 9: Optimal profit percentages with optimal exiting.
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Table 1. Descriptions of the sample  

Royalty  
Reported  Non-

reported 

Total 

Reported  188 68 256 Size of the 
deal Non-

reported  
9 0 9 

Total  197 68 265 
 
 
 
Table 2. Additional descriptions of the sample  
Variable  Average Minimum Maxim

um  
St.Dev. 

Number of previous alliances 19.18 0.00 91 18.26 
Royalty (in percentages) 0.35 0.01 0.75 0.19 
Size of the deal (in milions of 
dollars) 

129.32 0.00 1658.00 287.41 

Length of alliance (in years) 4.13 0.00 10.00 2.43 
 
 Preclinical/

discovery 
Phase 
I 

Phase 
II 

Phase 
III 

BLA/ 
NDA 
filed 

Number of allainces per stage of 
signing 

138 22 29 44 22

 
 
 
Table 3. Distribution of alliances dependent on experience 
 Variable 

coding 
Number of 
alliances per 
cell 

Totaly without experience (no prior alliances) 0 56 
Small experience (less than or equal to 5 alliances) 1 46 
Medium experience  
(more than 5 and less than or equal to 33 alliances) 

2 120 

Abundant experience (more than 35 alliances) 3 43 
 



 
Table 4. Time of entry and co-development experience 

Number of alliances per experience  Phase of signing 
Totaly 
without 
experience 

Small 
experience 

Medium 
experience  
 

Abundant 
experience 

Row 
total 

Preclinical/discovery 26 (46.43%) 28 (66.67%) 61 (53.04%) 23 (54.76%) 138 
Phase I 2 (3.57%) 4 (9.52%) 11 (9.57%) 5 (11.9%) 22 
Phase II 4 (7.14%) 5 (11.9%) 16 (13.91%) 4 (9.52%) 29 
Phase III 9 (16.07%) 3 (7.14%) 23 (20.0%) 9 (21.43%) 44 
BLA/NDA filed 
 

15 (26.79%) 2 (4.76%) 4 (3.48%) 1 (2.38%) 22 

TOTAL  255 
 Limited experience Larger experience  
Preclinical/discovery 54 (55.1%) 84 (53.5%) 138 
Phase I 6 (6.12%) 16 (10.19%) 22 
Phase II 9 (9.18%) 20 (12.74%) 29 
Phase III 12 (12.24%) 32 (20.38%) 44 
BLA/NDA filed 
 17 (17.35%) 5 (3.18%) 22 

TOTAL  255 
For the second model: Pearson Chi-square: 18.1993, df=4, p=.001129 
 
 
 
Table 5. Cash as a function of experience: ANOVA results 
  Cash  

 N Mean Std.Dev. Std.Err 

Total 204 71.42 128.85 9.021 

Totaly without experience 39 47.67 44.75 7.17 

Small experience 40 25.51 28.31 4.48 

Medium experience 100 76.62 135.15 13.51 

Abundant experience 25 161.14 218.38 43.68 
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