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We propose a structural model for the valuation of defaultable securities of a firm which
models the effect of deliberate misreporting done by insiders in the firm and unobserved
by others. We derive exact formulas for equity and bond prices and approximate expres-
sions for the conditional default probability, recovery rate, and credit spread under the
proposed credit risk framework. We propose a novel estimation approach to structural
model estimation which accounts for noisy observed asset values. We apply the proposed
method to calibrate a simple version of our model to the case of Parmalat and show
that the model is able to recover a certain amount of misreporting during the years of
accounting irregularities.
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1. Introduction

Structural models of credit risk represent an elegant framework for modeling valua-
tion of risky debt. Those models make explicit assumptions about the dynamics of
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a firm’s assets and its capital structure, which are then used to determine the occur-
rence of default. The literature on structural models goes back to Merton (1974),
where the firm defaults if, at the time of servicing the debt, its assets are below
its outstanding debt. A more general approach was introduced by Black and Cox
(1976) who relax the Merton’s assumption and model default as the first passage
time of the firm’s asset value below a certain threshold. Further generalizations treat
coupon bonds, the effect of bond indenture provisions, see Geske (1977), stochastic
interest rates, see Longstaff and Schwartz (1995) and Collin-Dufresne (2001), and
endogenous default barriers optimally triggered by equity owners when the asset
fall to a sufficiently low level, see Leland and Toft (1996).

All those models are based on the assumption that the firm’s dynamic is regu-
lated by a diffusion process and that the value of the firm can be observed directly.
Since diffusion processes have continuous sample paths and default is the first hit-
ting time of a barrier, then default is a predictable stopping time. This leads to
an underestimation of the short-term credit spread, which are by far lower than
those observed in the market. This major flaw of structural models has given rise to
alternative approaches to credit risk modeling. One possibility is to extend struc-
tural models, for example by including jumps. Another very popular method is the
so-called intensity based approach, also known as reduced form approach. The in-
tensity based approach does not model default in terms of assets and liabilities of the
firm, but defines the time of default as the first jump-time of an exogenously given
counting process. The advantage is that the default event becomes an inaccessible
stopping time, thereby removing the disturbing feature of strong underestimation
of short-term credit spreads. Intensity-based models, however, are often criticized
because they lose the micro-economic interpretation of the default time.

There are also hybrid models which combine the best features of both ap-
proaches. Duffie and Lando (2001) reconcile the structural and intensity-based
framework by observing that the key difference between them is the information
set assumed to be known. More specifically, they propose a model with endogenous
default threshold, but in which the market only observes noisy or delayed account-
ing reports from which investors have to draw inference of the true asset value of
the firm. This model creates a non-zero instantaneous hazard rate of default, thus
implying a non-zero short term credit spread. Several works have appeared after
this seminal paper, all focusing on how the available information set impacts the
term structure of credit spreads. Cetin et al. (2004) and Guo et al. (2006) propose
an approach in which the market is assumed to only partially observe, and possibly
with a lag, relevant information concerning the state of the firm. Giesecke and Gold-
berg (2004) add incompleteness to structural models by assuming that the default
barrier is a stochastic process, thus investors cannot deduce the distance to default
from the firm’s fundamentals as in Merton or Black-Cox models. Frey and Rung-
galdier (2007) consider a model in which the intensity is driven by unobserved state
processes, and the calculation of measures of risk such as default probability leads
to a nonlinear filtering problem. In all these cases, default becomes an inaccessible
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stopping time for the market, thus yielding a reduced form credit risk model.

Our paper belongs to this branch of the literature and focuses on the role of
accounting information on pricing. We explicitly model the dynamics of the misre-
porting process as dependent on the actual performance of the firm and impacting
both the disclosure of the market value of the assets and the future evolution of the
firm’s asset value. We calibrate a simple version of our model to the data for the
Parmalat company around its bankruptcy. The results indicate that the amount
of misreporting was not negligible, and that by ignoring it, the model would have
resulted in a large overestimation of the firm’s volatility.

The rest of the paper is organized as follows. Section 2 describes the components
of the proposed model with incomplete information and misreporting. Section 3
gives explicit formulas for bond and equity prices under a Merton framework. Since
such formulas are not directly implementable, we provide in Section 4 implementable
expressions for bond and equity prices. Section 5 provides formulas for the default
measures resulting from our credit risk framework. Section 6 presents results of the
calibration of a simple version of the model to the Parmalat case. Section 7 concludes
the paper. More technical results and proofs are provided in the appendix.

2. A structural model with Incomplete and Distorted Information
2.1. The effect of accounting quality on pricing

A recent branch of credit risk literature has focused on the quality of accounting
information and its effect on the term structure of credit spreads. Yu (2005) proves
that accounting noise is actually priced in the market by showing empirically that a
risk premium is charged to the credit spreads of firms that adopt less transparency.
Cherubini and Manera (2006) model the effect of deliberate misreporting on ac-
counting statements through the introduction of a probability of fraud which the
market updates whenever new information about balance sheet is issued. Brigo and
Morini (2006) consider the effect of accounting reliability by modeling the ratio
between the level of default barrier and the value of company assets as a random
variable, where pessimistic scenarios, possibly corresponding to fraud in accounting,
are associated with larger values of this ratio. None of the above studies models ex-
plicitly the dynamics of misreporting. We introduce a credit risk framework which
incorporates the misreporting event as an intrinsic feature, and is estimable using
market and accounting data.

Misreporting may arise if the market has incomplete knowledge of the manager’s
objective function, since then he may be better off with the option to misreport,
see Fisher and Verrecchia (2000). We work under this assumption since the exact
nature of the manager’s compensation, his time horizon, and his litigation risk
and reputation costs associated with biased reporting are often unavailable to the
market.

Although it is not easy to estimate the managerial risk of misreporting, recent
studies have started addressing this issue. For example, Wang (2007) proposes a
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bivariate probit model to recover the probability of committing fraud from the
probability of detected fraud. As an illustration, Figure 1 reports the estimated
probability of misreporting obtained using the methodology in Wang (2007) for
Tyco, a well known case of misreporting in the United States history. The values
of the predictors used in the model have been taken from Edgar database on a
three-month basis for the period ranging from January 2001 to December 2003.
Such time frame includes the misreporting period which covers the years 2001 and
2002, and this is well captured by the model which shows a much higher probability
of misreporting (around 80%).
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Fig. 1. The probability of fraud as a function of time obtained for Tyco using the model 17 proposed
in (Wang (2007))

The discussion above supports our argument that it is worth considering misre-
porting risk as an additional risk factor in credit models (beside volatility risk and
accounting noise). The next subsection defines in detail the proposed framework.

2.2. Model Definition

We consider a probability space (£, F,P) with the following system of stochastic
difference equations, a generalized version of a Hidden Markov Model:

Vk = emk

Tr—1+ (,u(@k,l) — 0~5U(9k71)2)Ak + U(Hk,l)vk
Or = T(Ok—1, 21, 0, W)

2k = xp + h(Op—1) + v(0k—1)ur

Tk
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Here, Vj, describes the evolution of the asset value of the firm and is modeled as a
discretized geometric Brownian motion, with xj being the log-asset value process,
and g = N (o, 02), and drift 4 and volatility o both depending on the parameter
0. Moreover, z; describes the released observation to the outsiders, with Ay denot-
ing the time between consecutive observations, typically associated with release of
balance sheet reports which often occurs on a quarterly basis. We assume that {vg},
{wg}, {ux} are independent sequences of i.i.d Gaussian random variables with zero
mean and unit variance.

Moreover, © = {#() =1, =2, ... #(™) = m} is a finite set of integer modes
of cardinality m, I is a measurable mapping © x R xR — IM, and h is a measurable
mapping © — R assumed to be time-invariant for notational simplicity only.

The interpretation is as follows. We can think of 8 as a random variable which
designates the report model used by the manager of the firm to release the obser-
vations to the investors. Such report model affects both the future evolution of the
actual asset value, see eq.(2.1), and the value released to the outsiders by the man-
ager of the firm, see eq.(2.4). More precisely, the released log-asset value z;, depends
on the report model 0;_; in place during the time interval [tg_1,tx] through the
function A which models the amount of misreporting associated with a given report
model. Depending on whether h(fy_1) is positive or negative, an overstatement or
an understatement of the actual performance of the firm will occur when the report
model 05 _1 is selected by the manager. The situation of no distortion occurring can
be modeled by having h(f—1) = 0. The parameter v(6;_1) captures the variance
of accounting noise associated with the report model v(0;_1).

The set of report models is assumed to be finite. Equation (2.3) models the
choice of the current report model 6 used by the firm’s manager as dependent on
the last report model, the state of the firm at the time immediately preceding the
release of the observation and other factors affecting misreporting represented by
the vector p. Such factors can be the quality of corporate governance, the litigation
and reputation costs associated with getting caught, or the manager bonus trigger-
ing threshold. As already mentioned in Section 2.1, outsiders do not always have a
perfect knowledge of managerial objectives. We model this lack of information with
a gaussian random variable wy, and assume that the market estimates the model 6
used by the manager using the function I" which depends on the optimal manager’s
choice of the report model. Such choice is the solution of an optimization problem,
where the manager maximizes his expected utility function of misreporting, typi-
cally depending on the manager’s stock ownership and equity compensation minus
his disutility of getting caught. Such optimization problem depends on the true
state xy, the previous report model 6;_; and wy. The dependence on the previous
report model is introduced in our model to denote the fact that the misreporting
event also depends on the past managerial behavior.
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3. Merton Model with Incomplete Information
3.1. Notation and terminology

The following notation will be used henceforth:

— n(x; u,0): gaussian density with mean p and standard deviation o

— A (y) := P(0x = j|0r_1 = i, 2% = y): mode switching probabilities

— M(y) :== P(6y = j|lwo = y): prior mode probability

- p(z|y,l) := Pz = z|0y—1 = l,xx,—1 = y): mode dependent transition
density

— p(x) := P(xo = x) : the initial density on xg

— prjk(z) := P(x) = x|.7]): the posterior density

- pfclk(ac) = P(xy = z,0,_1 = l|FF): the mode conditioned posterior density

- pék(ac) = P(xy = z,0,_1 =, ZF): the unnormalized posterior density

- Lfc‘k(x) = p(zglzry = x,0k—1 = [): the mode conditioned measurement
likelihood

— Eflg(W)] = [ f(w)g(w)dw: expectation of g(W) with respect to the den-
sity f

- FF =o0(x1,x2,...,11): the insider filtration

- FF =o0(z1,%,...,2;): the outsider filtration

- JA?”]C = E[legZ'kZ] >k

- Ul2|/c = E[(a:l—i‘”k)%ﬁz,f] >k

3.2. The Pricing Framework

Assuming a Merton-type structural model, we propose a valuation framework in
which bond and equity prices can be calculated as risk-neutral conditional expec-
tations. We assume a fixed maturity 7" of the debt, and that the default event can
only occur at maturity, which happens if the actual asset value is below the nominal
value of the debt, assumed to be constant. We define the random variable

_{T if Vp < K

cif Vp > K (31)

and denote by #° = %7V o(s As,s < t) the sigma algebra generated by the
observations enlarged with the information generated by the default indicator ran-

dom variable ¢. Before proceeding with the analysis, we state a useful result from
JeanBlanc and Rutkowski (2000).

Proposition 1 (Projection Formula). Let A be a bounded, .F7-measurable ran-

dom wvariable. Then for everyt < T':

E[1<>TA|<9\tZ}

P(s > t|.%7)
We apply the pricing methodology proposed in Coculescu et al. (2006) to our

credit risk framework. Denoting by P* the pricing risk-neutral probability, we define

El>rAlF ] = 15y (3.2)
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the risk-neutral estimate of the variable Vp as the .%#/ measurable random variable
N 1 -
Vp = ZEP v (ryskVr|F7] (3.3)

where Zp = P*(Vp > K|Z%), and define a defaultable contingent claim as an
integrable, .## measurable random variable of the form:

dr = Lvus i f(Vr) + Lvp<xg(Vr) (3.4)

The main difference with the complete information models is that the defaultable
claims are assumed to be evaluated using the estimate Vo when the firm is not
in the default state and the true value is only observed at default. The price of a
defaultable claim is then computed in Coculescu et al. (2006) as

dy = e " TOEY [Lyps i f(V) + Vv )< g (Vo) L] (3.5)
In our case, if the defaultable claim is a bond, f(z) = K, g(z) = =, with K being
the nominal value of the debt. Therefore, we get that the time ¢-price of the bond
is:
B(t,T) = e T(T—t) pP~ [Kly, >k + 1VT§KVT|32:’§]
=" T(K - EP (K — V) T|.77)) (3.6)

If the defaultable claim is equity, f(z) = (r—K) and g(z) = 0. Therefore, we obtain
the time ¢ price of the equity is:

E(t,T)=e "TVE (Vi — K)1y, >k |Z7°) (3.7)

We have:

A EP Ly sk Vo | FF)
ly>k(Vr — K) = 1VT>K( PV s K) K

= EP 1y, sk V| F5°) — 1yps kK (3.8)

where the first equation is obtained using definition (3.3), while the second equation
follows from the projection formula (3.2). Therefore,

Et,T) = e " T OEF [BP 1y, k Vo | ZL)|FE] — EY [Lvps k K| FF)
= e " TOEP (Vp — K)Y|.27) (3.9)

We next discuss the choice of the pricing measure P*. Our market is incomplete
since the measurement equation of our filtering model exhibits jumps of m possible
different sizes, where m is the number of report models used by manager. Assuming
that the released log-asset value zj is the only traded asset, this means that the
jump risk cannot be hedged away. In addition, we have a discrete-time model with
continuously valued normally distributed noise. The specific measure P* has to be
inferred from market prices, either via modeling of the market price of risk or of the
dynamics of the Radon-Nikodim derivative, see Runggaldier (2004) for a survey.
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3.3. Ezxact Filtering

The calculation of the equity and bond prices requires the computation of a con-
ditional expectation, which means that the time 7" filtering density prp(z) of our
filtering model given by eq.(2.2-2.4) needs to be evaluated. This in turn requires
the calculation of the time ¢ filtering density py;(x). Such calculation is presented
in Appendix A, and it results in

Zl lptt( )

Dt t
| f]R r= 1ptt y)dy

where p} () is recursively defined as

(3.10)

Po(@) = Ll Z / X )paly, DY (5)dy (3.11)

3.4. Equity and Bond Prices

In order to simplify the exposition, the pricing formulas derived in this section
assume a filtering model in which p(i) = u, o(i) = o, i.e. the expected return
rate and the volatility of the asset is not affected by the report model used. We
follow an argument similar to the one used in Merton jump diffusion model, i.e.
replace p with r and assume that the biases h(i) and the jump risks v(i) are the
same under the historical and risk neutral measure. This is because the jumps in
the released log-asset value model managerial bias, which depends on the vector g
of parameters including factors specific to the executive such the reputation and
litigation costs associated with misreporting. Such risk is “nonsystematic” risk and
cannot be diversified away, thus we assume the same form under both measures.
Let us denote 7 =T — ¢ and introduce functions d; (z) and ds(z) as

z—lo r+0.50%)T
R g(K)U—% +0.502)
do(z) = di(x) — o/T (3.12)

The price of the bond is given by the following Proposition, proven in Appendix
C.

Proposition 2. The time t price of a bond maturing at T is given by:
B(t,T)=Ke "™ — Ep, [Ke ""N(=da(Y)) — e N(=d1(Y))] (3.13)
where py|; is the density given in eq.(3.10), Y is a random variable with density
Py|¢, and the functions dy and dy are defined in eq.(3.12).
Similarly, the equity price E(t,T) is given by
Proposition 3. The price of the equity at time t is given by:
E(t,T) = Ep,,[¢" N(d1(Y)) — Ke ""N(da(Y))] (3.14)
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4. Bond and Equity Price Computation

Although the filtering density (3.11) can be explicitly obtained, it is not amenable
to an efficient implementation. First of all, the recursive expression (3.11) shows
that an exponentially increasing number of terms have to interact to obtain the
unnormalized density at time ¢;. Additionally, it involves the evaluation of non
gaussian integrals due to the appearance of the terms A\7* and such integrals may in
general be computationally expensive to evaluate. Furthermore, the normalization
step required to obtain the posterior density in eq.(3.10) involves an evaluation of
m spatial integrations, thus increasing the computational burden even further. This
makes therefore practically impossible to compute exactly bond and equity prices in
our credit risk framework, since they both require to take expectation with respect
to the actual filtering density. In the next subsection we describe a filtering scheme
which may be used to approximate the density (3.10) and then compute equity and
bond prices under the proposed filtering approximation scheme.

4.1. The filtering approxrimation scheme

We employ the approximation scheme proposed in Capponi (2008) to compute an
approximate filtering density. Such methodology provides an approximation for the
unnormalized density pﬁck(x) using a weighted sum of gaussian densities selected
from a predefined finite base set as the solution of a convex programming problem.
Let us denote the base set B of gaussian densities as

B = {n; () }icr jes (4.1)

where I and J are two finite set of indices and n; ;(x) stands for the gaussian density
with mean p; and standard deviation o;. Moreover, we require

iy 7& Hig, VZ1 7é Z-2
Oy 7& Oja Vi1 # Jo (42)

meaning that the means and covariances of the gaussian densities in B are all
different.

We next show how an approximation to the actual unnormalized density pi’ & ()
at time t; can be obtained from an existing set of approximations to the unnormal-
ized density {p;_; ,_1(y)}r=1,...,m available from time t;_.

For any r = 1,...,m, let us denote by p},_; »_,(y) such an approximation which
would have been computed in the previous step of the approximation procedure and
is given by a weighted sum of gaussian densities as

Pr—1,k-1(y) = Z w(rz‘,j)ni,j(y) (4.3)
(i,j)€IxJ

Our goal is to approximate the actual filter density p§€7k(x) at time t; given in
eq.(3.11). This is done in two separate steps. The output of the first step is an
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approximate density pik(x) computed as follows:

Pop(@) = Ly (2 Z/ X y)p(ely, Dph—1 -1 (y)dy (4.4)

22

k|k Z/ )‘Tl p(xly, D)p— 1,k— 1(y)dy

= pgg,k(l“)

where the approximation step consists in replacing each term pi_l,k_l(y) with its
previously computed approximation ﬁz_l,k_l(y). We can write out explicitly each
term in the approximation, thus obtaining

ﬁi,k( k|k Zzw(z,j) /Ar’l(y)p(x\%l)ni,j(y)dy (4.5)

Eq. (4.5) shows that we have obtained an approximation density pé’ (@) for pgf’ & (@)
consisting of a larger number of components, which is no longer a mixture of gaus-
sians due to the appearance of the state-dependent mode probability A™!(y). To
this purpose we approximate ]527 () further before propagating it to the next step
k + 1. This is the second step of the methodology, which solves the programming
problem (P2) in Appendix B with density p replaced by

ﬁgc,k = (pgc,k(xl)7 e apfc,k(xq)) (4.6)

where 1 < z2... < x4 is a set of points chosen in such a way that pﬁck(m) concen-
trates most of its probability mass inside the interval [x1, z,] as detailed in Capponi
(2008). If w* denotes the optimal solution to (P2), the approximation density at
step k, which is propagated to step k + 1 is

pkk: Zw z])nld (47)
(@4)

The associated mode conditioned normalized density is given by

1
Phji (%) = L) Vi 2) (4.8)
2or=1220.5) Wiig)
and the associated normalized density is given by

pk k:(x) = m r
| 2r=1 2205 Wiig)

Expression (4.9) shows that the density approximation py; () returned from our fil-
ter approximation scheme is a gaussian mixture. We summarize the procedure with
a block diagram of the estimator in Figure 4.1. The above described approxima-
tion scheme has been shown to be extremely accurate and computationally efficient
in Capponi (2008). Moreover, the introduced error can be analytically controlled
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through an upper bound on the total variation distance between the actual un-
normalized filter density pr, () and the approximate density 755@, () provided in
Capponi (2008), where the total variation distance is defined by

/ DL o () — Bl (o) (4.10)
R

4.2. Approximate Bond and Equity Prices

We provide a directly implementable expression for the price of equity and debt
in our proposed model. The initial value of the firm’s asset at time ¢ is estimated
using the filtering procedure described earlier, thus the density of the initial log-
asset value is a gaussian mixture. The formulas will be given as equalities, although
they are to be considered as approximations due to the filtering density of the initial
log-asset value being approximated by a gaussian mixture in our non-linear filtering
model. We now state an obvious result as a lemma which will be extensively used
hereafter:

Lemma 1. Let Z be a random variable having a density of the form
fz(Z) = Zwlle(z), Zwl =1 (4.11)
i=1 i
where fz,(z) is the pdf of a measurable random variable Z;. Then the expectation

of a function f of Z may be expressed in terms of the expectations of the function
f of the component random variables Z;, each of them taken with respect to the
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probability density fz,

2 = wiBlf(Z)] (4.12)
Let
{fi\t, &z\w/‘{} (4.13)

be the means, variances and weights of the components of the Gaussian mixture
density for the log-asset value at the initial time ¢, computed using the filtering
methodology described in Section 4.1 along with the received observations F7. For
reading purposes, we denote the variance (& &) t) of the j-th mixture component as
Af‘ t] It follows, from eq.(2.2) and from the assumptions made in Section 3.4 that
both drift and volatility are mode independent, that the conditional density of the

log-asset value x7 at maturity has a gaussian mixture density specified by

Prye(w Z,ut n(x; xT\t’UT|t) (4.14)
J

where 2 xT‘t = ;z:t‘t (r —0.50%)7 and 6%“ =,/6 t|t '+ 027. Using Lemma 1 we have:

Ele™(K - Vr)*| 7] = _”Zut (K = V{)7] (4.15)

where VT| .

standard deviation &%‘ , as defined above. Moreover, let

is the exponential of a gaussian random variable with mean ijT‘ , and

i‘{‘t —log(K) + (r — 0.50%)7

& = , dgd{(,/ +ar> (4.16)
/7t|t P t|t

Then the price of the bond is given by the following Proposition, proven in Appendix
D

Proposition 4. The price of the bond at time t is given by:

B(t,T) = ”TE)H Ke " N(=dj) — " 0N (—d])) (417)

A similar calculation can be done for the equity price E(t,T) leading to
Proposition 5. The price of the equity at time t is given by:

T) =Y (OO N (@) — Ke " N(df))
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5. Computation of Default Measures

Credit risk models have in common the goal of explaining two quantities, default
probability and loss given default, whose product can then be used to compute the
credit spread. In the next subsections we give closed form expressions for conditional
default probability, recovery rate, and credit spreads under our framework, and
assuming that the proposed filtering approximation scheme is used to approximate
the density of the initial asset value.

5.1. Default Probability

The default may occur only at time 7T, and it occurs if Vp < K. We define the
default probability as

PD(t,T) = P(Vr < K|V, > K, ) (5.1)

A calculation presented in Appendix F shows that the default probability in our
model is given by a weighted sum of conditional default probabilities, where each
weight w is proportional to the weight of the gaussian density in the mixture and
the distance to default of the asset value estimated using the mean of such density.

Proposition 6. The probability of default at time T as seen at time t is given by:

T) =Y wiP(Y; < —ds(&),)|X; < ddf) (5.2)

J J : log(K
%, dd! = % dy is defined in eq.(3.12) and (X;,Y;)

has a bivariate normal distribution function with positive correlation px,y;:

where wi =

5J
_ _ 2 =1 2 =1 _ o—t‘t
,UXJ'_MY]-—OvUXj— vUYj_ +T’ pXij—i
ag°“T
\/C T—i—Ut‘t

We can think of X; and Y} as two positively correlated random variables, where
X is measurable using the information available by time ¢ and reveals information
about the distance to default of the current asset value estimated using the mean

(5.3)

of the j-th gaussian density in the approximation, while Y} is measurable using the
information available at maturity T and denotes a default event if it is smaller than
the default threshold.

The default probability computed using our model reduces to the Merton de-
fault probability as the uncertainty around the true value x; gets to zero, and the
conditional pdf p(z;|.#;) approaches a sum of delta functions > (x: — ﬁ{lt). Then
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we obtain

T):ng' Jlim P(Y; < —da(#),)|X; < ddj)

= Zw PY < —do(x))

= N(—dz(xt)) (5.4)

where the second line follows because Y; becomes uncorrelated from X as O'tl ,—0
since px;y; — 0. The last line of eq.(5.4) corresponds to the probability of default

in the standard Merton model.

5.2. Expected Recovery Rate

When default occurs, the recovery rate RR(t,T') is given by the ratio of the asset

value to the nominal value of the debt, V/K. However, this is true only if Vi < K,

otherwise no default happens and no recovery can be observed. More formally, the
expected recovery rate, RR(t,T'), in Merton model is defined as:

\%

RR(t,T) = [ r

Vr < K} (5.5)

Altman et al. (2000) give an explicit expression of the recovery rate in terms of the
ratio of two standard Gaussian probability functions, i.e.

Vi o N(—d;(log(V}))

RR(T) = e N =a (og ()

(5.6)

In our model, we have to condition on the set of received observations, thus leading
to the following definition of recovery rate at default:

V;
RR(t,T) = E[Ig Vi > K, Vp < K, 7} (5.7)

The detailed calculation is presented in Appendix G. Here, only the final result is
stated:

Proposition 7. The recovery rate at time T as seen at time t is given by:

o _ y
¥, +—25 P& < ddl s < —dy (37
RR(t,T)=¢" Y w]® P kel 1(;“) (5.8)
j K P(Xj < ddtan < _dQ(xﬂt))
where
P(X; <dd],Y; < —d )
; ( i 2@ (5.9)

w *u - -
COTYE HP(X < dd)Y; < —da(3]),))
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and (§5,v;) is a bivariate gaussian with negative correlation coefficient pe,y, :

2 2 5
_Ad Tt 2 2 t|t _ t|t
He; = 0% Hyy = Uﬁ’aéj =1 oy, =1+ o270 Péivi = R

tlt

(5.10)
o2t + 6

while (X;,Y;) is the bivariate defined in eq.(5.3)

As already pointed out in Subsection 5.1, when the model consists only of
eq.(2.2), ;¢ = 0 and the conditional pdf p(x¢|.#;) becomes the delta function
§(x — &y)). Moreover, both (X,Y’) and (£ v) become uncorrelated pairs since their
correlation coefficient is zero. Therefore, the cumulative distribution function of X
cancels the cumulative distribution function of £, and both Y and 1 converge in
distribution to a standard Gaussian. Hence, we recover the expected default rate in
the standard Merton model given by eq.(5.6).

5.3. The term structure of credit spreads

The bond price B(t,T) can be expressed as

B(t,T) = €_TTE[K1{VT>K} + VTl{VTSK}|ytZ] (511)
From the definition of credit spread
1 B(t,T)
csSt,T)=—-1 —_— 5.12
(0.7 = T 1og (T ) (5.12)

it follows immediately using equation (5.11) that
1
CS(t,T) = = log(1 — PD(t, T)LGD(1,T)) (5.13)

where LGD(t,T) := 1 — RR(t,T) is the loss given default. Using the previously
derived results, we obtain:

Proposition 8. The credit spread at time T as seen at time t is given by:
Zj MgP(Xj < ddgayj < _d2(‘i'z|t))
>oimy miN (ddj)
2,5
j rr+dd e j ~J
S il e T PG < dd], vy < —da(#)),))
>oiey i (ddy)

where (X;,Y;) is the bivariate gaussian defined in eq.(5.3), (&5,%;) is the bivariate
gaussian defined in eq.(5.10).

CS(t,T) = filog 1-

(5.14)

Differently from Merton model, the credit spread for short maturities does not
approach zero in our credit risk framework, but is given by
DY j piny

g
lim OS(t,7) = L =a 7t 5.15
Hy O80T = S N ) (515)



April 6, 2008 2:50 WSPC/INSTRUCTION FILE CreditRiskModelling-
ithMisreportingQuantFinancel7

16 A. Capponi and J. Cvitanié

where
 Gog(K)—2,)?
j 1 26207

=€ ¢t (5.16)
,/27r€7t"tj

Eq.(5.15) can be easily derived by taking the limits of eq.(5.14) as 7 — 0.
Eq.(5.15) may be rewritten as:

lim CS(¢, ) ”22 ; (5.17)
umn ,T) = — w - .
70 2 £ ' N(dd])
J
where
, j J
7 /’LtN(ddt) (5.18)

b piN(ddy)

We notice that eq.(5.17) has the functional form of a weighted sum of instantaneous

J
hazard rates, since each term N&”dj) is the ratio of the survival density conditioned
t

on the j-th gaussian density being the actual density of the log-asset value and the
n

N(dtd{)

as a quantitative measure of the likelihood that the asset value falls below K in the

short term if the estimate izlt

corresponding survival probability. In this context, each term

can be thought

is believed to be the correct log-asset value estimate.

6. Calibration Results
6.1. The estimation procedure

We consider a simple case of our model in eq.(2.1-2.4) where at any time, the
manager can either report the log-asset value correctly or bias it by a fixed amount
h. We further assume constant drift p and volatility o in eq.(2.2) and constant
variance v in the measurement equation (2.4). Since we are assuming the same
distortion throughout the period, we do not have the model selection equation
(2.3) under this framework. The filter density is then gaussian with mean 2, and
variance UI%I . given by the Kalman filter as

(‘%k\k’aim) :KF(i‘k‘k_l,&ilk_l,Zk,h,I/) (61)
where

-%k\kfl = -i'k71|k—1 + (p— 0.50'2)A1c (6.2)

(}Iz\k—l = (}i—uk—l + 02 A

&2 h
G = 2’“’“7—12 (6.4)
ak‘k_lh +v

Tk = Tpp—1 + G- (2k — Tppp—1) (6.5)

6’]%“(: =(1- G)ﬁiucq
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Moreover, it is easily seen that under these assumptions the price of equity
E(t,T) in eq.(3.14) reduces to

E(t,T) = e®1 050 N (dy (#4)) — Ke™ ™" N(da (&) (6.7)

We next describe a maximum likelihood estimator procedure which recovers
the system parameters from a time series of market prices of equity. Differently
from Duan (1994, 2000), who implies the exact asset values from equity prices,
we imply the the reported values from equity prices. Let us first assume that a
sample of released observations z1,..., 2, was observed on the market at discrete
dates {t1,t2,...,ts} and denote by A; = t; — t;_1 the time between consecutive
observations. Eq.(2.4) implies that the log-likelihood function is given by:

n (2 — Ziji-1)?
LL(z1,29,...,2n) = —3 log(2m) — nlog(o) — Z o5 (6.8)
i=1 ili—1
where 2;;_; and l}i2|i71 are given by
Ziji—1 = Tii—1 + D ’91‘2\1‘—1 = @2\1‘—1 + 12 (6.9)

However, when we do not directly observe z;, we need to imply it from equity data
and this is done using the approach described next. Eq.(6.7) shows that the equity
price at time ¢; for a maturity 7; can be expressed as

E(tiv Tl) = f(:%iliv 6'12\1’ u, o, h, v, T)
= g(zia‘%ﬂi—ha—?ﬁ_l,ﬂao’a ha’/a T.) (6]—0)
where f and g are two deterministic functions. The latter equation follows from the
updating step of the Kalman filter given in equation (6.5) and (6.6).

Expressing the equity at time ¢; in terms of z; is particularly convenient because
it would allow to imply z; through inversion of g, in case g is invertible. This turns
out to be the case since the first order derivative of g with respect to z;

ag(yi7 i‘i\ifla 6-7;2|i,17 w, o, h7 V)
azi

= P05 N (g G (6.11)

with df defined by
P log(Z;/K;) + (r + 0.50%)7; — 67,

it
3 (6.12)
\ /61‘2\1‘ + o027

is positive. Here 7; is the difference T; — t; and K; represents the amount of out-

standing debt at time ¢;. Therefore, we can recursively imply the observations z;
from the market prices of equities eq,...,e;, where e; denotes the equity price at
time t;, using the three-step procedure described next:

(1) Predict the mean and variance of the true log-asset value using the time
propagation formulas of the Kalman filter given in eq.(6.2) and (6.3).
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(2) Imply z; from g, i.e. numerically compute
Z :g_l(ei;:i‘i\ifla6-1‘2‘7;717/11703]7’) V,’I") (613)

where the notation g_l(ei;iﬂi,l,&?‘iﬂ,u,a,h,z/, r) indicates that in the
inversion we are considering g as a function only of the variable z; and
keeping the remaining parameters fixed.

(3) Update the mean and variance of the true log-asset value using the correc-
tion formulas of the Kalman filter given in eq.(6.5) and (6.6).

Let p; = (im_l,&f‘i_l,u,a, h,v). Then we can rewrite the log-likelihood function
as

1 i (97 (eis pi) = Diji—1)? _

)
P 251’|i—1

LL(ey,e2,...,en) = —g log(27) — nlog(o) —

> log(G - N(dy)) = Y (& +0.567,) (6.14)
i=1 i=1
where Z;);_ is computed using eq.(6.9) in the step (1) of the above procedure. The
value z; = g~ ' (e;; p;) is implied from step (2), while #;; and 61‘2\2’ are computed in
step (3) along with dj.

6.2. Application to the Parmalat case

We apply the above methodology to estimate h, u, o, 2 for the case of Parmalat, an
Italian food firm which experienced a crisis during the years 2002-2003 and resulted
in the largest bankruptcy in European history. We chose Parmalat since this has
been already investigated in the credit risk literature, see Brigo and Morini (2006)
and Cherubini and Manera (2006), and therefore it allows us to make a comparison
of our results with theirs.

During those two years Parmalat was repeatedly announcing issuance of bonds
despite its balance sheet statements reporting huge amount of available cash lig-
uidity that was not used. On December 8, 2003, it was suddenly discovered that its
claimed liquidity of four billion euros did not exist, and that eight million Euros
in bonds of investors’ money had evaporated as well. An illustration of Parmalat
financial distress is illustrated in Figure 3 using CDS, equity and debt data.

In Figure 3 the default risk is estimated as the difference between the quasi-debt,
i.e. the value of debt discounted with the risk free rate, and the fair value of debt,
computed discounting debt with the risk free rate plus the 5-year CDS spread. The
bottom plot of Figure 3 shows that the crisis was announced by a decline in the
stock price combined with a simultaneous increase of the default risk. Moreover,
the top plot shows a steep increase of the credit spread curves at around the time
of default.

We collected the daily stock data from January 1, 2002 to December 1, 2003 and
computed the daily value of equity multiplying the number of outstanding shares
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Fig. 3. Parmalat crisis

by the stock price. At each time t;, we assume that the outstanding debt K; has
5-year maturity and proxy it with the long term debt recovered from the balance
sheet statements. We use the 5-year treasury yield as the discount factor. We run
the calibration procedure using our method and compare the parameter estimates
with the ones obtained by running the maximum likelihood estimation procedure by
Duan on the standard Merton model. The estimates reported in Table 1 show that
the hidden parameter h plays an important role in the specification of the model.
If it were omitted, as it happens for the Merton model, then the reduced value of
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the firm due to accounting misreporting would simply be explained by an increase
of the asset volatility which rises to 17 %. Our estimate of asset volatility of 11 %
matches closely with the estimates of asset volatility found by different calibration
procedures, see Cherubini and Manera (2006) and Brigo and Morini (2006). Our
estimate 0.2052 of the distortion factor recalls the findings of Cherubini and Manera
(2006), who perform a historical analysis of risk neutral probabilities of fraud via
a modification of Merton model and extract an implied probability of fraud of
about 0.2. Although there are differences in the assumptions and analysis between
our work and theirs, making it hard to compare, using the simplest version of our
model we find qualitatively similar results to the ones they obtain with the full
power of their model.

7. Conclusions

In this paper we have proposed a framework for modeling deliberate distortion of
the reported firm’s asset values. The distortion is applied by insiders of the firm
such as managers and is not directly observable by the outside market which can
only infer it from available data. The amount of distortion depends on the current
performance of the firm and it also has implications on the future management of
the firm. The estimate of the log-asset value of the firm under the market infor-
mation becomes a non-linear filtering problem and the conditional log-asset value
density cannot be directly computed due to number of terms increasing exponen-
tially in time, with each of them being computationally intensive to evaluate. In
order to deal with the exploding computational complexity of the problem, we have
employed a practical and implementable filtering approximation scheme which ap-
proximates the actual log-asset value density with a gaussian mixture. We have
derived explicit and computable expressions for bond and equity prices, conditional
default probability, recovery rate and credit spread under the proposed framework
using the above mentioned approximation scheme.

We have presented a novel estimation procedure for a simplified version of our
model and applied it to the Parmalat case. Such estimation procedure implies the
market observations of the reported log-asset value, instead of the actual log-asset
value which is only known to insiders, from equity prices. The obtained results

MLE Estimates
Parameters | Proposed Model H Merton Model

[ -1.3% (0.0055) || -0.8% (0.054)
o 11.2% (0.0022)% || 17% (0.007)
h 0.2052 (0.0024)
v 0.002 (0.0002)%

Table 1. Parameter estimates
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are in line with the existing findings in the literature, and confirm the importance
of modeling accounting distortion in credit risk models and evidence that their
omission may result in exaggeratedly large estimates of asset volatility.

Appendix A. Filter Equations

Since {0} take values in a finite set and I' is a mapping into ©, equation (2.3)
induces state-dependent mode transition probabilities as follows:

Nod(z) := POy = j|0k—1 = i, 21 = )
= / P(wg, 0 = j|10k—1 = i, 2 = x)dwg,
R

= / POy = j|0p—1 =1, wk, 2 = ) f (wy)dwy,
R

= /]Rl{j:m,z,wk)}f(wk)dwk (A1)

We next develop a recursive expression for the unnormalized posterior density, in-
stead of working directly with its normalized counterpart. Such density is obtained
through an interaction of m Bayesian filters, with each filter being an unnormalized
posterior density

p%k(x) = Pz, = 2,01 =, 7f), l=1,...,m (A.2)
The unnormalized prediction density is defined as
Phogoo1() 7= Plag = 2,001 = 1, F¢_y) (A.3)

and can be developed as

/ Zp(xk =2, 051 =Y, 0k—1 = 1,02 =1, F;_1)dy

—Z/ N y)p(ly, Dph—1 -1 (y)dy (A.4)

where it is easily seen from eq.(2.2) that p(z|y,l) is a gaussian density with mean
y+ (u(l) —0.502(1)) Ay, and variance o(1)2Ay, The above decomposition steps follow
from straightforward application of Bayes rule. The unnormalized posterior density
may then be obtained as

Pioi(@) = Lfc\k(x)pgc,kq(x)’ k=2,
Pha(@) = Ly () / palu, O, Dp(u)du (A5)
R

where the correction term L§c|k($> is a gaussian density with mean z; + h(0x_1)
and variance v2(_1), which is easily seen from eq.(2.4). The mode conditioned
posterior density is then obtained as

Pk k(%)

re1 Pr()dy

pgc\k( ) = f]R (A.6)
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The posterior density may then be obtained from the interacting bayesian filter
through normalization as

Y
f]R Z:Ll Pz,k(y)dy

Prie() (A7)
Appendix B. The Density Approximation Method
Recall from Section 4.1 that the base set B of gaussian densities is defined as

B ={ni;(@)}icrjeu (B.1)

where I and J are two finite set of indices and n; ;(x) stands for the gaussian density
with mean p; and standard deviation o;
Let p(x) be the density which we wish to approximate. We choose a training set

X = (v1,22,...,2q) (B.2)
where x; € R. Let us define the matrix

nl(scl) 1’12(121) e 1’1‘”(.’131)

Ill(l'g) l'lg(xg) e 1’1‘”(132)
pX)=1 . S (B.3)
ny(zg) na(zg) ... ny(xy)
where n;(2;) = (n1(21),n42(21), ..., 45/ (1)), i.e. a row vector whose j-th entry
is the gaussian density in B with mean p; and standard deviation o; evaluated at
xXy.

Moreover, we assume that ¢ < |I| x |.J], i.e. the size of the training set is strictly
smaller than the cardinality of the base set B. Let p = (p(x1),...,p(Xq))". The
linear system

pP=¢z (B.4)

is solvable and overdetermined as ¢ < |I] x |J|. Although we could solve the system
and then approximate the density p(z) with Z(i,j) 2(i,jyN4,j(x), we notice that such
approach would require to propagate a number of gaussian densities equal to the
size ¢ of the training set, and therefore it would scale linearly with the size of the
training set, making a real time implementation computationally intensive. Our
goal is to approximate p using a short linear combination of gaussian densities and
at the same time not commit too great an error. Therefore, we look for the sparsest
representation of p(z) in the following sense:

min ||[v]|p  subject to ||p — ¢v||2 < (P1)

(P1) is a mathematical programming problem with decision variables v, and ||v||o
denotes the number of non-zero entries of the vector v, i.e.

[lvllo = [{(,5) : viig) # O} (B.5)
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where v; ; is the entry of the |I| x |J| dimensional vector v multiplying the gaussian
density n; ;. If v* is the solution of (P1), we would approximate p(z) with

p(x) =Y v i) (B.6)
(4,4)

However, this is of little practical use, since the optimization problem (P1) is non-
convex and generally impossible to solve as its solution usually requires an in-
tractable combinatorial search. To this purpose, we look for the convex penalty
function which is as closest as possible to ||v||o. The closest convex function which
does not charge for zero coefficients, and charges proportionally more for small coef-
ficients than for large coefficients turns out to be the I; norm. Therefore, we propose
to solve the following optimization problem

min||w||; subject to ||p — ow||2 <€ (P2)

with decision variable w. The problems (P1) and (P2) differ only in the choice of the

objective function, with the latter using an [; norm as a proxy for the sparsity count.
However, unlike (P1), (P2) is a convex second order cone programming problem, and
can be solved efficiently in polynomial time using standard optimization algorithms.
Therefore, we will approximate the actual density p as

p(z) = Zw(i,j)ni,j(x) (B.7)
(4,4)
A set of experiments presented in (Capponi (2008)) show that the number of non
zero components of w is very small if the density p is reasonably sparse.

Appendix C. Bond and Equity Prices

We recall from Section 3 that the time ¢ price of a bond with maturity T is given
by

B(t,T) = e”""(K — BT [(K — Vr)*|F{]) (C.1)

Following the assumptions made in Section 3.4 the probability measure P* is ob-
tained replacing p with 7 and assuming that the biases h(i) and the jump risks v(7)
are the same under the historical and risk neutral measure. We then have

Ele™" (K — V)" |77 = eiTT/ / P(xr = x|zs = y)pee () (K — ") dydu
RJR

= o) | Plar = slee = )i - &) dady (C2)
R R

where we have used the assumption made in Section 3.4 that the volatility risk o (1)

is mode-independent. The inner integral can be explicitly computed since P(xr =

z|ry = y) is a gaussian density with mean u, =y + (r — 0.502)7 and variance 0?7,

thus

2, [(K = e¥)7] (C.3)

Hy,o=T

/ P(zr = 2|y = y)(K — ") do = E,,
R
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2

where n,, .2, indicates the gaussian density with mean p, and variance o“7 and

X is a random variable with density n,, -2,
We have

En#y.,aZT[(K - €X)+] = Enuy,gz7[K1{KzeX}} - E,

= Il - IQ (04)

2 [6X1{K26X}]

Hy,o°T

It is easy to see that Iy is given by:
I = KN(=d(y))

where da(y) = %f;m. We compute I as:

—da2(y)
I, = / et oVTEn (2)dz

1 e, >
= eV"TTN(=d1(y)) (C.5)
where dy (y) = da(y) + o/7. Therefore,
En(aipy o) (K —€®)T] = Ke™""N(=da(y)) — ¢"N(=d1(y)) (C.6)
Thus, we have that
Ele™"(K = Vp)*|F7] = By, ,[Ke "N (=dy(Y)) — € N(=dy (Y))] (C.7)

where Y is a random variable with density p,; and the price of the bond is then
given by

B(t,T) = Ke '™ — By, [Ke™"" N(=ds(Y)) — e/ N(~dy (Y))] (C.8)

Appendix D. Approximate Bond and Equity Prices
We recall from Section 4.2 that the price of the bond at time ¢ is given by

)"l (D.1)

B(t,T) = Ke '™ = > uE[(K -V},
J

where VTZ‘ . is the exponential of a gaussian random variable with mean i‘JTl ;=
i Y ~2,]
;vg‘t + (r — 0.502)7 and standard deviation UjTlt = ,/Utl’tj + o27. We have

E[(K - Vi) = ElK1 ey 3] = E[V%Itl{sz;-‘t}]

=H -1 (D.2)
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It is easy to see that I{ is given by:

. log(K) — &7 — (r — 0.502)7
H=KP|N®©1) < L
A2j
t‘t + o027
— KN(~d}) (D-3)
i # —lo r—0.50%)T ;
where dJ = — j(K):;( 0377 We need a little bit of extra work for I3
b o?r
. —dj .
Ié :/ exp {ii“ + (T _ 0'50,2)7_ + mz}n(z)dz
—¢ 1\1+0 5‘7t|t +TTL/ (Z \/aiﬂtﬁﬂﬂ‘r
V27
_ 0 ) (D.4)
where dJ = dJ, + \/W Thus
Ele™™™ (K — Vi, )" = Ke 7N (=dj) — SN (—d]) (D5

Therefore, plugging eq.(D.5) into eq.(D.1), we have that the bond price is given
by

B(t,T) = Ke™'" Zut Ke " N(~dj) — 0t N(—d])) (D6

Appendix E. Bivariate Integrals

It is possible to establish a relation between integrals of the form

/“ e N (bx + ¢)n(z)dx (E.1)

— 00

for some constants a,b,c and the bivariate normal distribution function. This is
done as follows:

/ e N (bx + ¢)n(z)dx

/ / n(be + y)n(z)dydz

_ (46 (@—a)2 _ (ytab)?
2 2

_b(y+ab)(7;—a)dydgg (E2)

2

This can be related to the bivariate normal distribution as follows:

B(a,b,c) = / e N (bx + c)n(z)dx = B%P(X <z,Y <¢) (E.3)

— 00
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where (X,Y') has a bivariate normal distribution with

b
V14062

px =a, py = —ab, o2 =1, 0J2-:1+b2,p:— (E4)

Appendix F. Probability of Default
Set I = 7 — 0.502. Then, we have

PD(t,T) =P(Vr < K|V, > K, F})
_ P(Vr < K.V, > K|F{)
PV, > K|Z7)
_ P(X7 <log(K),X; > log(K)|F{)
B P(X; > log(K)|F7)
_ P(r+0oN(0,7) < —X; +1og(K), X; > log(K)|.77)
a P(X; > log(K)|.ZF)

(F.1)

where the last equality follows because we can decompose Xt = X; +N(I7,027) as

log(K
it can be easily checked. Denote de Aig() Developing the probability (F.1)
t|t

using the associated density functions, we obtain that the denominator is given by:

m m

P(X; > log(K)|[F7) =1 =Y p{N(=dd}) = > u/N(dd]) (F2)
j=1 j=1

while the numerator P(It + o N(0,7) < —X; + log(K), X; > log(K)|-#7) can be
computed as follows:

—z+log(K) )
/ (Z:u’f €T3 t|t’ t|t )> (/ n(y;lTaU T)dy>d56
log(K) —00

j=1

— . i [7 J 223 —a +log(K) —I7
= g I / n(x; &),,6 )N( dx

j=1 ' log(K) e el o\VT

m Aj

B S L= Ty —x +log(K) — It

S [ ¢m< q|>N< SEL

j=1 log(K) Jt|t O—ﬁ

m o pdd] 51, — &, +log(K) — It

Yoy — Type T og(

= J N d F.3

St [ o ( e y (F3)

N

where the last line follows from a change of variable y = a:";iz Using the result
t|t

in Appendix E, we can conclude that the numerator is a convex combination of

bivariate cumulative distribution functions, i.e.

P(Vr <KV, > K|F7) = Zm (Xj <dd},Y; < —do(@],))  (F4)

Jj=1
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&), —log(K)
57

, do is the function defined in eq.(3.12), and (X;,Y;) has a

where dd] = ;.Y
t|t

bivariate normal distribution function with positive correlation px;y;:

~2,9

o)
Hx; = py; = O’Ugff =1, Jg’j =1+ tTlt’ PX;Y; = — (F.5)
. . o’ /UQTJrUt't
. i uIN(dd?) .
Defining w] = W’ we obtain
T) = S wiP(Y; < —da@ )X, < dd) (.6)

Appendix G. Recovery Rate
Set | = (r — 0.502), Z, = It + o N(0,7). We have

RR(t,T) = —E[Vy|Vr < K,V, > K, F7]

1
K
1
- E157[eXt+ZT|X,5 > log(K), Z, < log(K) — Xy, F7]

e® log(K)—z 1740 m j
flog(K) ng( el fy”( )dij:l pin (ff,xtltaﬂt )dx(G 1)
P(X: + Z; < log(K), X; > log(K)|-Z7) '

The denominator can be decomposed as follows:
P(X: + Z; <log(K), X: > log(K)|-#F) = PD(t,T)P(X: > log(K)|.%7) (G.2)

where both of the quantities above have been computed in Appendix D. The nu-
merator in the last line of equation (G.1) can be written as:

N log(K) — 2z — It — %7
_ TT J AQ,] N g d
e Z,ut/l e n(m,xtlt, Gyi) ( o7 x (G.3)
2

mo L pdd] —#7 +yé? +log(K) — It — o2
rr 27 —yé? tlt tlt
=e E wle t\t/ eV ttn(y)N( l l e )dy

; i’j —log K
where dd] = ~1*——

=7 . The last line of the derivation above follows from the change

t|t

f\t -z

of variable y = . Using the result in Appendix E, we obtain that the numer-

t|t
ator is again a convex combination of bivariate gaussian cumulative distribution

functions given by

ey ple’ he P(f < ddf, iy < —di(2],)) (G.4)
j=1
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where d; is the function defined in eq.(3.12), and (&;,v;) is a bivariate gaussian

with negative correlation coefficient pe;y;:

e, = —67 . = &fl’tj o2 =1, o2 —1—&—63{5 p = &z‘t (G.5)
€& = T %% My T T =00 T Oy T 20 P&y — - :
’ | AV ’ o o1 + 5?\’5
J i -
. i g P(X;<ddy,Y;<—da (%)) .
Defining wy = ST WP (K S Vi 2% (3,)) we obtain
o2
o et e P& < dd] iy < —dy(@)
et PG < ddy, oy < —da(d),))
RR(t,T) = €™ Y w—— L = (G.6)
j=1 P(X] S ddt,Yj S 7d2(xt|t))
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